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1 The slowness principle
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In this work, we investigate slowness as a coding principle for the primary visual cortex
(V1):

� The input signals to the cortex originate from the sensory cells by raw, local mea-
surements of the environment.

� Such measurements are extremely sensitive to small changes in the state of both
the environment and the observer, and vary thus on a timescale faster than that
of the environment itself.

� The slowness principle assumes that the cortex extracts slow signals out of its
fast varying input in order to reconstruct information about the environment.

� Slow features are likely to reflect the properties of the environment and are in addi-
tion invariant or at least robust to frequent transformations of the sensory input.

2 Slow Feature Analysis
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The problem of extracting slow features from time sequences can be formally stated as
follows [5]:

� Given an input signal x
�
t � , find an input-output function g

�
x � (in the simulations

presented here a polynomial of degree 2).

� The function generates the output signal y
�
t ��� g

�
x
�
t � � .

� The output signal should vary slowly, i.e. minimize � ẏ2
j � .

� The output signal should carry much information, i.e. � y j � � 0, � y2
j � � 1, and

� y j � y j � � 0 	 j 
�� j.

This optimization problem can be solved with slow feature analysis (SFA) [5], an unsu-
pervised algorithm based on an eigenvector approach.

3 Input data

Our data source consisted of 36 gray-valued natural images. We constructed image se-
quences by moving a window over the images by translation, rotation, and zoom and sub-
sequently rescaling the frames to a standard size of 16 
 16 pixels. To include temporal
information, the input vectors to SFA were formed by the pixel intensities of two consecu-
tive frames at times t and t � dt.

x(t) x(t+dt)

+

input vectorset of natural images

4 Results - Physiological-
like experiments

SFA learns a set of units that consist in
second degree polynomials that applied
to our input visual stimuli have the most
slowly varying output. The units are or-
dered by slowness (the first unit being the
slowest) and their outputs are mutually un-
correlated. The functions g j can be in-
terpreted as non-linear spatio-temporal
receptive fields of neurons in V1 and
tested with input stimuli such as linear
sinus gratings much like in neurophys-
iological experiments.
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5 Results - Optimal stimuli

We can also analytically compute for each unit
the optimal excitatory stimulus S � and the
optimal inhibitory stimulus S � , i.e. the input
that elicits the strongest and the weakest output
from the unit, respectively. This is in analogy
to the physiological practice of characterizing a
neuron by the stimulus to which the neuron re-
sponds best.
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6 Results - Response images

We use test images in order to study the activity of the units to a large spectrum of stimuli (e.g. in the example on the left, to all
orientations and a wide range of frequencies).
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7 Conclusions

We have shown that slowness leads to a great variety of complex cell properties found also in physiological
experiments, namely edge detection, phase-shift invariance, active inhibition, non-orthogonal inhibi-
tion, direction selectivity, end-inhibition and side-inhibition. Our results demonstrate that such a rich
repertoire of receptive field properties can be accounted for by a single unsupervised learning principle.

Additional material, papers and other informations are available at
http://itb.biologie.hu-berlin.de/ � berkes
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