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For example, in the bivariate case:

Parameters 
of the copula family

Uniform marginals
generated from the copula

The observations are 
generated with the inverse cdf 

of the marginals

Estimation is unbiased for a wide range of parameters.
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Modeling neural dependencies
• We propose to fit parametric families of copula models to joint neural activity by
Maximum Likelihood estimation

• Different copula families are able to capture dependencies of different kinds. The
selection of an appropriate parametric family for the copula distribution can be
addressed by cross-validation
Dealing with discrete marginals: Learning a copula model with discrete marginals
requires care, because the cdf maps data to a finite set of points in the copula space
(Genest & Naslehova, 2007). Our strategy is to derive a generative model on the data
and integrate over the uniform marginals:

We considered a total of ten copula families (Gauss, Student-t, Clayton and
associated copulas, Gumbel, Frank, and the two-parameter family BB1).
Based on cross-validation and redundancies between the copulas, we
selected four families that consistently fit the data better.

Description of neural data

We analyzed pairwise dependencis in
36 neurons simultaneously recorded
using a 100-electrode silicon arrays
from the arm area of area M1 of a
monkey. Neural activity and hand
kinematics were recorded for several
minutes during a tracking task
(Serruya et al., 2002), and collected in
70 ms bins.
We modeled the marginal
distributions of neuronal firing rate
using Poisson distributions and fitted
copula dependency models using our
Maximum Likelihood method.
Two third of the data (3531 bins,
approx. 247 sec) was used for
training, and the remaining third was
kept for cross validation.

Likelihood function:
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Number of bits per second gained by considering the dependencies between
pair of neurons with a given copula families vs. an independent Poisson model:
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What dependencies can be found
between pairs of neurons in M1?
Most neurons show dependencies
in the upper tails of their
distributions, and only limited
dependency when the firing rate is
low.

Future work - LNP-copula models: Preliminary results show that after
fitting a Linear-Nonlinear-Poisson (LNP) model to the data, there are
residual dependencies that can be captured by copula models.

Kinds of neural dependency

Clayton copula Negative Clayton copula

Clayton survival (UU) copula Frank copula
Definition: A copula C is a multivariate distribution over the unit cube with uniform marginals.

Sklar’s theorem (1959): Given u1, ..., un random variables with continuous distribution functions
F1,...,Fm and joint distribution F, there exists a unique copula C such that for all x:

Conversely, given any distribution functions F1,...,Fm and copula C,

is a n-variate distribution function with marginal distribution functions F1, ..., Fm.

Copulas also provide a principled way to quantify dependencies that go beyond correlation coefficients
(which are only appropriate for elliptical distributions), in a manner that is independent of rescaling of
individual variables (Nelsen, 1999) and are applicable to the problem of estimating the mutual
information between stimulus and response, as discussed in (Jenison & Reale, 2004).
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What is a copula model?
Copulas provide a way to  model a joint distribution by specifying  the marginal distribution 
and the dependency structure  separately.
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Introduction
• The activities of individual neurons in cortex and many other areas of the brain are often well
described by Poisson distributions

• Neurons display strong dependencies due to common input and network connectivity

• We introduce copula models as a principled, parametric method to combine Poisson
marginals into a joint distribution with desired dependencies

Key idea: Every distribution can be transformed into a 
uniform distribution between 0 and 1 using its cdf
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