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Abstract

Many computational models have offered functional accoohthe organization
of the sensory cortex. However, most have lacked the steicteeded to extract
the high-order causes of the sensory input. Here we pregmrtexative model of
visual input based on the duality between the identity ofgeBeatures and their
attributes. The presence of a feature is encoded by a bidemnyify variable, while
its appearance is modeled by a multidimensional manifadampetrized by a set
of attribute variables. When applied to natural image secegrthe model finds
attribute manifolds spanned by localized Gabor waveleth similar positions,
orientations, and frequencies, but different phases. Theisnferred activity of
attribute variables after learning resembles that of stngells in the primary vi-
sual cortex. Identity variables indicate the presence eb#ufe irrespective of its
position on the underlying manifold, making them phaseiisdtive, like complex
cells. The dimensionality of the learnt manifolds and tHatrenships between the
wavelets correspond closely to anatomical and functiohaéovations regarding
simple and complex cells. Thus, this generative model makpficit an inter-
pretation of complex and simple cells as elements in the eatation of a visual
scene into independent features, with a parametrizatidhedf episodic appear-
ance. It also suggest a possible role for them in a hieraathystem that extracts
progressively higher-level entities, starting from sierplow-level features.

1 Introduction

The properties of cells in the cerebral cortex are known tbrided to the structure of the sensory
environment. One (Helmholtzian) view for why this might ethat the goal of a perceptual system
— to infer from sensation the environmental causes moslylitee be responsible — compels it
to reflect the generative causal structure of the environm&ecent theoretical work that links
receptive fields in the visual cortex to the statistics oLir@timages may be viewed in this light.
An assumed model specifies the properties of causes and legwcdimbine to generate images;
the parameters of the model are fit to an ensemble of natueajas) and then inference within the
learnt model is compared to the response of cortical celtsvaver, the generative models assumed
tend to be elementary: the effects of hidden causes supeserimearly in the image; the causes are
homogeneoua priori; and their distributions are eitherdependent andsparse [1, 2], or (in video
sequenceshdependent, buttemporally stable or predictable [3, 4, 5]. Despite their simplicity, such
models have been notably successful in mirroring resportgeepties of visual cortical neurons.

The true causal structure of images is more complex. Onetilepdrom the simplistic model can be
seen in the failures of an algorithm that has largely beeocessful in extracting high-level properties
from a simple 1D environment. The Slow Feature Analysis (S&H§orithm uses a statistical model
in which data are generated by a number of slowly-varyingeei[6, 7]. When exposed to a simple
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Figure 1. lllustration of the basic structure
of the model. Each object or feature is rep-
resented by a binary variabte ; that indi-
cates its presence or absence and is mod-
eled by a manifold formed by the set of its
episodic poses, defined by a mappingand
parametrized by variables ;; that are in-
terpreted as attributes of the object or fea-
ture. The episodic poses are multiplied by
the state of the identity variables, so that ab-
sent objects give no contribution, and then
combined through a functioji to generate
the observationg;.

environment formed by translations of random objects, S#gikris two sets of variables: one set
whose response relates to the form of the object, indepéoéiga position (vhat information), and
one which gives the position of the object, irrespectivaofarm (whereinformation) [6]. Although
these results are encouraging, there are important lionist First, although the two kinds of signal
differ semantically, the model gives all variables the sapeiori meaning. A readout system that
needed to access just one of the signals would face the diffim@blem of distinguishing between
them. Second, the input sequences used for these expesicmntained only individual objects.
When multiple objects are present, a what/where divisidhestierges, but different objects are
typically mixed into single features, as their signals hsiveilar temporal scales (Anonymous 2005,
unpublished results). Further, if every object needed toHagacterized by more than one attribute
(for example, if it varied in positiomnd scale), attributes that belonged to the same object would
not be bound. These problems are not due to the particular @ver latent variables assumed by
SFA (on the contrary, our results suggest that the variahlesir model are best described by a
slowly-varying dynamics), but instead come from the stitedtmismatch between the SFA model
and the environment, and should be expected in any moded$satned homogeneous variables.

We therefore propose a different class of models, in whietdthality of object or feature identity on
the one hand and the ensemble of its attributes on the oshepiesented explicitly. One possible
class of models isilinear. While such models have been studied before [8, 9], thisezaslork
was based on explicitly labeled objects or features in ingidlata (that is, different views of the
same item were labeled as such). Here, we show that a simipledsimodel trained in an entirely
unsupervised way from natural image sequences, natuesiyg biologically plausible features,
with low dimensional manifolds of attributes. Many aspetftthe learnt representation correspond
closely to anatomical and functional observations regardimple and complex cells in the primary
visual cortex (V1). This offers a functional interpretatifor the presence of two main classes of
cellsin V1. Complex cells represent the probability of prase of an oriented feature, while simple
cells parameterize the precise appearance of the featthe inisual input.

2 Themodée

We implemented the basic distinction between identity atribates using a generative model with
two coupled sets of variables with distinct semantics. ieatity of external causes is represented
by binary variables; ; that indicate the presence or absence of causdimet. The appearance
of each cause in the input is modeled by a manifold formed bys#t of its episodic poses, i.e.
every point on the manifold is a possible configuration of abgect or feature in the input space.
The manifold is defined by a mappirg and parametrized by variableg;;, that are interpreted
asattributes (Fig. 1). To make this concrete within a cartoon examplesi®er the rightmost panel
of Figure 1, which contains the model for a beverage can. Trmvaindicates the point on the
manifold where the can has a particular position and viemtdaithe input visual space. If one of
the attribute variables corresponds to the orientatiorhefdan, changing its value would trace a
trajectory on the manifold, which would result in a rotatmfithe object in the image space.

As shown in Figure 1, these two sets of variables interacotmfthe input data. To generate the
observationg,, the episodic poseB, (s, ;) are multiplied by the state of the identity variabtgs,



so that absent causes give no contribution, and then comhtfineugh a functiory:

yi= f({q)i(st,i) : Ct,i}i) + €t 1)
wheree; is an additive, independent noise term.

Here, we follow [8, 9], and define the mappings(s; ;) to be linear (equivalently, we define the
attribute manifolds to be hyperplanes) ahtb sum its arguments. This gives a bilinear mapping

de ds
yi = Z Zwij St,45Ct,i + €t - @

i=1 j=1

Assuming that the noise term is Gaussian with variance along dimensioni, we can write the
probability of observing an input sequence conditioned eatting of the latent variables:

T T
P(Y|C,S) = HP(YtHCt,i;st,i}i:l ..... d.) = HNyt Zwij St,ij Cti diag(ajd) )
t=1

t=1 ij

where Nx(p, ) is a Gaussian distribution over with meany and covarianc&. Here and in
the following capital letters stand for the set of all vatéghwith the corresponding lowercase letter
(e.9.C={c;}fort=1,...,Tandi =1,...,d.).

A complete probabilistic model also requires a prior digttion on the latent variables. In this case,
we might expect objects or features to appear in a visuaksicglependently of one another and for
extended periods of time, and their appearance to vary imantmus way. This translates into a
prior distribution over identity and attribute variablesfallows. Identity variables are modeled as
independent, binary Markov chains:

pO)=11 (P(Cl,i) HP(Ct,i|Ct—1,i)> 4)
7 t>1
P(Cl;i = ].) = T, P(Ctﬂ; = CL|Ct,1,i = b) = Tba7 a, be {0, ].} . (5)
Our intuition that objects are persistent in time is respeéethen the probability of remaining in the
current state is larger than that of switching, i.e. whentthasition probabilitied, andT;; are
larger thanl /2. Attribute variables are modeled with a State Space ModgM)5

P(S) = H (P(Su) HP(St,i|St—1,i)) (6)

[ t>1
P(s145) = Ny ,,(0,02) P(stilsi—1,i) = Ns, , (Aisi—1,:,X5) . (7)
The matrices\; = diag(\;;) andX; are defined to be diagonal, meaning that attributes are vgcor
lated, and are related by the equatlip= 1 — A?, so that the variance of the attribute variables is
1 in the prior [7]. This imposes an absolute scale, elimirgatescaling degeneracy. Slowly-varying
variables have a positive autocorrelation, and would tlave iparameters;; between 0 and 1, with
larger values corresponding to slower variables.

Ideally, the dimensionalities of the model — the numberslgéots and associated attribute vari-
ables — are also learnt from data. We use a Bayesian approaetermine these values, in which
we assume aAutomatic Relevance Determination (ARD) prior over the weightd3V [10, 11]:

P(W) = HP(Wij) = H/\/(Ovdiag(%j)_l) : 8

These zero-centered Gaussian priors discourage largdtseighe widths of the distributions are
set by the precision hyperparametgyswhich are learnt alongside the other parameters. Since the
weights of redundant attribute dimensions are free to miuelprior, and as this is centred on the
origin, they are driven to zero. The precision hyperparamedn then diverge to infinity, effectively
pruning the weight from the model. As a result, only the disiens of the attribute manifold that
are required to describe the data without overfitting reraative after learning [10, 11].

For the rest of the parameters we choose conjugate prigshe&aption of Fig. 2) The complete
directed graphical model showing the dependencies betvag@ables is depicted in Figure 2.

1Conjugacy means that the posterior distribution has the same functionala® the prior, resulting in



Figure 2: Directed graphical model. Circles represent random
variables, and rectangles represent hyperparameters. Gragdshad
elements are observed variables. The dashed plate indicates that
its content is replicated’ times (the length of an input sequence)

in the complete model. The prior over the input noise precision
1/o7 , is a gamma distribution with parametets, ey, the prior

over the transition matrigs, is Dirichlet with parametersa(™?,

and the prior oveh;; is a nonstandard distribution (due to the cou-
pling between mean and variancesgf;) in the exponential family

that requires 4 hyperparameters to be specifjed,(, andc).

3 Learning

In the Bayesian formulation the parameters of the modelaradlly equivalent to latent variables,
differing only in that their number does not increase with thumber of data points. The goal of
learning is then to infer the posterior joint distributioveo variables and parameters given the data:

P(C,5,0[Y,8), 9)

where® indicates the ensemble of all parameters arall hyperparameters (in the following for
simplicity we will omit the dependency af). Although this distribution is intractable (as in most
non-trivial models), it is possible to usestuctured variational approximation to obtain a tractable
system. The idea is to introduce a new factored distribu@ofi, S, ©) in which some dependencies
between the variables are neglected, while keeping thefdisé distribution intact. Learning pro-
ceeds by functional minimization of the Kullback-Leiblévergence between the factorized and the
real posteriolk L(Q(C, S, ©)||P(C, S, ©]Y)). It can be shown that this minimization maximizes a
lower bound of the marginal likelihooB(Y") [11].

The key factorization underlying the Variational Bayes &ogation Maximization algorithm
(VBEM) [11] is the one between latent variables and pararsete

P<C7 S, @‘Y) = Q(07 S)Q<@) : (10)

Given this basic factorization, the algorithm proceeds teyatively inferring the latent variable
distribution Q(C, S) given the observations and averaging over the parameEe8=yg), and the
parameter distributio))(©) given the observations and averaging over the latevtSép). We
need two further factorizations to achieve a tractablerétlyn: one between the distribution of
weights and input noise, and one between different ideméitiables at different times. Note that
these approximations do not completely eliminate deperidsrbetween the factorized variables,
which still influence each other through their sufficienttistacs (for example their means). In
particular, the method is much less constraining than tinenconly used approach of Maximum A
Posteriori (MAP) estimation, where the entire posteri@tritution is collapsed to a single point
by taking the values of latents and parameters at the modkeoudh the derivation of the learning
equations requires long algebraic computations, they argetl from the VBEM setting without
any noteworthy deviation, and are thus omitted here duedoesjimitations.

4 Results

In the following, we present the representation learnechbymiodel when applied to natural videos
sequences, and compare it to the representation found ifTMd sources of our input data are the
CatCam videos [12], which consist of several minutes of mdiog taken from a camera mounted
on the head of a cat freely exploring a novel natural enviremm Since some sections of the
video contain recording defects (block artifacts or pixelsation) we selected a subset that showed
minimal distortion (labeled0811I ux in the dataset). Observations consist of the time-series of
pixel intensities in fixed windows of siZ) x 20 pixels. The windows were placed to cover (without
overlaps) the centr&00 x 200 region of the video. In this way we obtained a total of aboul,800

tractable integrals. Conjugate priors are intuitively equivalent to haviegqusly observed a number of imag-
inary pseudo-observations under the model. By choosing the number of pseudo-observations gfithr we
can regulate how informative the prior becomes.



Basis of the
attribute manifold

Identity variables

Figure 3: Basis vectors learned from natural videos. The basis vestgrspanning the attribute manifold of
identity ¢ are shown in theth column. Each weight vector is normalized to improve visibility. Gray, empty
boxes indicate weights that were pruned by the algorithm. Identity variabdesorted by decreasing frequency
and the basis vectors are sorted by increasing precigion

frames. The input data were preprocessed by removing tha ofesach frame to eliminate global

changes in luminance and to compensate for the camera’alglaim control mechanism. The data
were then reduced in dimensionality from 400 to 81 dimerssiwith equalized variances, using
principal component analysis.

We initialized the model with 30 identity variables and iatite manifolds of 6 dimensions and let
the algorithm learn the model size by reducing the numbectfaattribute dimensions by ARD
hyperparameter optimization. The mean of the weigh{swas initialized at random on the unit
sphere, and the priors over the parameters were chosen tonbiaformative for the input noise
(1 pseudo-observatiorar,g,k = (0.3)%) and more informative for the dynamic parameters (2000

pseudo-observations), favoring persistent identityaldeis and slowly-varying attributeél(o) =
0.9,(Th1) = 0.8, (A\i1.4.) = (0.3,...,0.1)). We perform 500 VBEM iterations, using at each
iteration a new batch of 60 sequences of 50 frames takenddmafrom the entire dataset. After 300
iterations we start learning the precision parametgrsupdating their values every 20 iterations.

When presented with a new set of observations, the modekiafeiistribution over the values of
the latent identity and attribute variables. To make comspas with neurons in the visual cortex,
we identified the mean of the distributions with the neurah@rrate. This choice is necessarily
arbitrary, since we lack an established theory of how to rmapabilistic models to neural hardware.
In particular, the brain is quite likely to represent morartha single value, carrying information
about uncertainty in order to be able to weight alternatiterpretations of the data. Fortunately,
however, the model learns to infer the values of the laterialbes with high confidence for stimuli
at high contrast. Thus, the probability distributions tetddo concentrate around the mean, and
many different choices of neural correlates would give Eimresults.

Figure 3 shows the learned basis vectors. Each column gsgie basis vectors of the attribute
manifold corresponding to one identity variable. Sincertemnifold is a hyperplane, each feature
is modeled by all linear combinations of the basis vectoig. (#d). For every manifold, the basis
vectors are shaped like Gabor wavelets with similar pasitarientation, and frequency, but dif-
ferent phase (Fig. 5a—c). Thus every point on the manifoklahaimilar shape, orientation, and
frequency but varies in phase (and possibly amplitude). VWinesented with a drifting sine grating
of orientation and frequency similar to the one of the basigars, the probability of the feature be-
ing presentP(c;; = 1|y.) rapidly approaches 1 and remains constant, while the atitripariables
oscillate to track the position of the sine grating on the ificdoh as illustrated in Figure 4. Attribute
variables thus behave similarly to simple cells in V1, inttiey respond optimally to a grating-like
stimulus and oscillate when its phase changes; while ityevariables respond like complex cells,
being insensitive to the phase of their optimal stimulus.

To explore this connection further we compared propertfesirople cells RFs in V1 as reported
in the physiological literature with the RFs of the attribwariables. Because the model (due to
the multiplicative interaction of identity and attributariables) and the inference process (notably
because oéxplaining away effects) are nonlinear, we computed the best linear appratkn to
the input-output function by linear regression using cetbnoise input. The resulting filters were
visually indistinguishable from the basis vectors in FEg& and are thus not shown. We then
computed the parameters for the resulting RFs by fitting aoGfimction to the filters.

Figure 5 (a—c) shows the distribution of orientation, freqey, and phase for each pair of RFs
belonging to the same identity variable (for instance, éde with a 4D attribute manifold would



contribute 6 points to each graph). Thinking that attributerresponding to the same feature might
cluster in the visual cortex, we compared these plots to #te eported in [13] for pairs of simple
cells recorded from the same electrode in area 17 of the saalcortex (Fig. 5d—f). In both cases
we observed clustering of the pairs primarily in orientatand somewhat less in frequency, while
no relation was apparent in phds&he distribution of preferred frequencies and orientaim the
attributes RFs are shown in Figure 6 (a,c). The distributibfiequencies is quite broad compared
to that found in models based on sparse coding or ICA [14,Vibére frequencies tends to cluster
around the highest representable value, and compares viklithe width of the distribution in
simple cells (Fig. 6b) [16]. The joint distribution of orieion and frequency (Fig. 6d) covers
the parameter space relatively homogeneously. Note tka€C#iCam input data show less high-
frequency power at horizontal orientations, which is reéiddn the results. Figure 6e shows the
joint distribution of RF width and length in normalized w{number of cycles) in our model and
for simple cell RFs as reported by Ringach [17] for area Vlhmmacaque. The aspect ratios are
similar in both cases (again, unlike ICA results), althotlglhmodel results tend to have larger RFs,
possibly again due to the particular content of the video.

Initially, the algorithm learns a representation withitite manifolds of full dimensionality. Many
attribute dimensions, however, are later found to be redondr unnecessary, and are thus elim-
inated by the ARD prior. At the end of learning the represtmtais slightly overcomplete, with
96 basis vectors representing an 81-dimensional inpuespac the dimensionality of each feature
manifold is typically between 2 and 4 (Fig. 7). This can be pamed with the number of input
dimensions that influence the response of a complex cellstamated by the number of statisti-
cally significant non-zero eigenvalues in the Spike-TriggeCovariance matrix. Touryan et al. [18]
report a distribution of significant dimensions highly pediat 2, with only a few complex cells
influenced by 1, 3, or 4 dimensions. However, they considsigasficant eigenvalues that are both
larger than expected by chanaed whose difference from the preceding eigenvalue is suffilsien
small. This latter criterion is arbitrary, and so we takeirthesults to lower bound the actual dis-
tribution. Rust et al. [19] perform a similar analysis ussgatio-temporal stimuli and report 2 to 8
significant dimensions for complex cells. Since our weiglsinstantaneous, and to represent tem-
poral changes would require additional dimensions, we tiaiseto be an upper bound. Moreover,
their distribution of significant dimensions is quite broadhich is consistent with our resutts

The posterior distributions over the dynamical paramefgrsand A;; confirm that the learned
causes are indeed stable in time. Another set of simulatizatsdoes not make use of the tem-
poral prior (not shown due to space constraints) resultsmmodel that requires more basis vectors
to describe the data but is in general inferior as measurétd free energy (the lower bound on the
marginal likelihood) and by its match to physiological datamporal stability seems thus to be an
important cue to recover external causes [cf. 4, 5].

2Phase difference is estimated here by fixing the global orientation amdeiney of an identity to the one
of the best fitted RF, and re-fitting only the phase parameter to the RFs athiteattribute variables.

3The stimuli used in [19] were random bars fixed to the preferred otientand size of the cells. The
learned RFs are thus fundamentally 2D (one spatial and one tempogaiglon). Additional basis vectors that
would be needed to model changes in the RF in the direction of the optimatadite could thus be missing.
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Figure 5: (a—c) Distribution of orientation, frequency, and phase for pairs abat&rs belonging to the same
identity variable. (d—f) Similar plots for pairs of simple cells recorded ftbmsame electrode in area 17 of the
cat visual cortex [13].
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5 Conclusions

We have proposed a generative model for images based onrtlamiental duality between the
identity of an object or feature and its attributes. By esiflif considering the coupling between
these two aspects, it is possible to extract and bind togattrébutes that belong to the same object,
and at the same time construct an invariant representatithre mbject itself. We modeled identity
with a set of binary variables, each coding for the presenebgence of different objects or features.
Their attributes were described by a manifold parametriged set of attribute variables. Identity
variables were assumed to be stable, and their attributesryosmoothly in time. The interaction
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ated.
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between these two aspects was captured using a produchearity that combines the two sets of
variables to generate the input. We were also interestedtirmining the size of the model, i.e.,
the number of attribute and identity variables requiredptinoally describe the input data. This was
achieved by performing a Bayesian analysis of the model gndefining appropriate priors over
the generating weights. As a result, after convergencg,tbelweights needed to effectively match
the data remained active and all redundant attribute dirextvere pruned out, avoiding overfitting
the input data. The algorithm was applied to natural imagg@eeces, in order to learn a low-level
representation of visual scenes. The filters associatddthdt individual attribute variables were
shown to have characteristics similar to those of simplis @@NV1. The RF of attributes associated
with the same identity variable had similar positions, ot@&ions, and frequencies, but different
phases. As a consequence, the corresponding identityoleati@came invariant to phase change
and behaved like a complex cell.

In the standard energy model of complex cells and in seveesiqus computational models, com-
plex and simple cells form a hierarchy. Simple cells havertihe of subunits and are considered as
an intermediate step to build complex cells. Their phageeddent information is then discarded as
a first step toward the construction of an invariant reprieéem. Here complex and simple cells do
not form a hierarchy, but rather two parallel population eliswith two different functional roles:
the first coding for the presence or absence of orientedriesin its RF, the latter parameterizing
some local parameters of the features (mainly their phaga} interpretation is reminiscent of a
what/where stream segregation at the level of the primanyaticortex.

The key motivation behind the proposal of a structured méatedensory input was the potential to
extract high-level causes from natural data. Figure 8tilates how the model might be extended in
a hierarchical way to achieve this goal. In the schematgh-hével identity variables representing,
for instance, entire objects generate lower-order entitike parts of an object or image features.
For example, the activity of an identity variable corresiog to a face would activate with high
probability at the lower level variables coding for the @nese of eyes, nose, and mouth. Similarly,
high-level attributes like the size and viewpoint of thedfaeould influence low-level attributes like
the position of its individual parts. The hierarchy would fepeated down to individual image
features.  Such a structure would allow the visual systemeteefit from the advantages of a
Recognition-by-Components architecture, including thiéita to reuse known parts to form novel
objects, and to express the wide range of possible configneatf articulate objects [20, 21]. The
implementation of such a hierarchical system to learn assprtation of multiple, composite objects
will be the object of future work.
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