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Abstract

Many computational models have offered functional accounts of the organization
of the sensory cortex. However, most have lacked the structure needed to extract
the high-order causes of the sensory input. Here we present agenerative model of
visual input based on the duality between the identity of image features and their
attributes. The presence of a feature is encoded by a binary identity variable, while
its appearance is modeled by a multidimensional manifold, parametrized by a set
of attribute variables. When applied to natural image sequences, the model finds
attribute manifolds spanned by localized Gabor wavelets with similar positions,
orientations, and frequencies, but different phases. Thusthe inferred activity of
attribute variables after learning resembles that of simple cells in the primary vi-
sual cortex. Identity variables indicate the presence of a feature irrespective of its
position on the underlying manifold, making them phase-insensitive, like complex
cells. The dimensionality of the learnt manifolds and the relationships between the
wavelets correspond closely to anatomical and functional observations regarding
simple and complex cells. Thus, this generative model makesexplicit an inter-
pretation of complex and simple cells as elements in the segmentation of a visual
scene into independent features, with a parametrization oftheir episodic appear-
ance. It also suggest a possible role for them in a hierarchical system that extracts
progressively higher-level entities, starting from simpler, low-level features.

1 Introduction

The properties of cells in the cerebral cortex are known to belinked to the structure of the sensory
environment. One (Helmholtzian) view for why this might be,is that the goal of a perceptual system
— to infer from sensation the environmental causes most likely to be responsible — compels it
to reflect the generative causal structure of the environment. Recent theoretical work that links
receptive fields in the visual cortex to the statistics of natural images may be viewed in this light.
An assumed model specifies the properties of causes and how they combine to generate images;
the parameters of the model are fit to an ensemble of natural images; and then inference within the
learnt model is compared to the response of cortical cells. However, the generative models assumed
tend to be elementary: the effects of hidden causes superimpose linearly in the image; the causes are
homogeneousa priori; and their distributions are eitherindependent andsparse [1, 2], or (in video
sequences)independent, but temporally stable or predictable [3, 4, 5]. Despite their simplicity, such
models have been notably successful in mirroring response properties of visual cortical neurons.

The true causal structure of images is more complex. One departure from the simplistic model can be
seen in the failures of an algorithm that has largely been successful in extracting high-level properties
from a simple 1D environment. The Slow Feature Analysis (SFA) algorithm uses a statistical model
in which data are generated by a number of slowly-varying sources [6, 7]. When exposed to a simple
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Figure 1: Illustration of the basic structure
of the model. Each object or feature is rep-
resented by a binary variablect,i that indi-
cates its presence or absence and is mod-
eled by a manifold formed by the set of its
episodic poses, defined by a mappingΦi and
parametrized by variablesst,ij that are in-
terpreted as attributes of the object or fea-
ture. The episodic poses are multiplied by
the state of the identity variables, so that ab-
sent objects give no contribution, and then
combined through a functionf to generate
the observationsyt.

environment formed by translations of random objects, SFA learns two sets of variables: one set
whose response relates to the form of the object, independent of its position (what information), and
one which gives the position of the object, irrespective of its form (where information) [6]. Although
these results are encouraging, there are important limitations. First, although the two kinds of signal
differ semantically, the model gives all variables the samea priori meaning. A readout system that
needed to access just one of the signals would face the difficult problem of distinguishing between
them. Second, the input sequences used for these experiments contained only individual objects.
When multiple objects are present, a what/where division still emerges, but different objects are
typically mixed into single features, as their signals havesimilar temporal scales (Anonymous 2005,
unpublished results). Further, if every object needed to becharacterized by more than one attribute
(for example, if it varied in positionand scale), attributes that belonged to the same object would
not be bound. These problems are not due to the particular prior over latent variables assumed by
SFA (on the contrary, our results suggest that the variablesin our model are best described by a
slowly-varying dynamics), but instead come from the structural mismatch between the SFA model
and the environment, and should be expected in any model thatassumed homogeneous variables.

We therefore propose a different class of models, in which the duality of object or feature identity on
the one hand and the ensemble of its attributes on the other, is represented explicitly. One possible
class of models isbilinear. While such models have been studied before [8, 9], this earlier work
was based on explicitly labeled objects or features in training data (that is, different views of the
same item were labeled as such). Here, we show that a simple bilinear model trained in an entirely
unsupervised way from natural image sequences, naturally learns biologically plausible features,
with low dimensional manifolds of attributes. Many aspectsof the learnt representation correspond
closely to anatomical and functional observations regarding simple and complex cells in the primary
visual cortex (V1). This offers a functional interpretation for the presence of two main classes of
cells in V1. Complex cells represent the probability of presence of an oriented feature, while simple
cells parameterize the precise appearance of the feature inthe visual input.

2 The model

We implemented the basic distinction between identity and attributes using a generative model with
two coupled sets of variables with distinct semantics. Theidentity of external causes is represented
by binary variablesct,i that indicate the presence or absence of causei at timet. The appearance
of each cause in the input is modeled by a manifold formed by the set of its episodic poses, i.e.
every point on the manifold is a possible configuration of theobject or feature in the input space.
The manifold is defined by a mappingΦi and parametrized by variablesst,ij , that are interpreted
asattributes (Fig. 1). To make this concrete within a cartoon example, consider the rightmost panel
of Figure 1, which contains the model for a beverage can. The arrow indicates the point on the
manifold where the can has a particular position and viewpoint in the input visual space. If one of
the attribute variables corresponds to the orientation of the can, changing its value would trace a
trajectory on the manifold, which would result in a rotationof the object in the image space.

As shown in Figure 1, these two sets of variables interact to form the input data. To generate the
observationsyt, the episodic posesΦi(st,i) are multiplied by the state of the identity variablesct,i,

2



so that absent causes give no contribution, and then combined through a functionf :

yt = f
(

{Φi(st,i) · ct,i}i

)

+ ǫt , (1)

whereǫt is an additive, independent noise term.

Here, we follow [8, 9], and define the mappingsΦi(st,i) to be linear (equivalently, we define the
attribute manifolds to be hyperplanes) andf to sum its arguments. This gives a bilinear mapping

yt =

dc∑

i=1

ds∑

j=1

wij st,ijct,i + ǫt . (2)

Assuming that the noise term is Gaussian with varianceσ2
y,d along dimensiond, we can write the

probability of observing an input sequence conditioned on asetting of the latent variables:

P (Y |C,S) =

T∏

t=1

P (yt|{ct,i, st,i}i=1,...,dc
) =

T∏

t=1

Nyt




∑

i,j

wij st,ij ct,i, diag
(
σ2

y,d

)



 , (3)

whereNx(µ,Σ) is a Gaussian distribution overx with meanµ and covarianceΣ. Here and in
the following capital letters stand for the set of all variables with the corresponding lowercase letter
(e.g.,C = {ct,i} for t = 1, . . . , T andi = 1, . . . , dc).

A complete probabilistic model also requires a prior distribution on the latent variables. In this case,
we might expect objects or features to appear in a visual scene independently of one another and for
extended periods of time, and their appearance to vary in a continuous way. This translates into a
prior distribution over identity and attribute variables as follows. Identity variables are modeled as
independent, binary Markov chains:

P (C) =
∏

i

(

P (c1,i)
∏

t>1

P (ct,i|ct−1,i)

)

(4)

P (c1,i = 1) = π0 , P (ct,i = a|ct−1,i = b) = Tba , a, b ∈ {0, 1} . (5)

Our intuition that objects are persistent in time is respected when the probability of remaining in the
current state is larger than that of switching, i.e. when thetransition probabilitiesT00 andT11 are
larger than1/2. Attribute variables are modeled with a State Space Model (SSM):

P (S) =
∏

i

(

P (s1,i)
∏

t>1

P (st,i|st−1,i)

)

(6)

P (s1,ij) = Ns1,ij

(
0, σ2

s

)
, P (st,i|st−1,i) = Nst,i

(Λist−1,i,Σi) . (7)

The matricesΛi = diag(λij) andΣi are defined to be diagonal, meaning that attributes are uncorre-
lated, and are related by the equationΣi = 1 − Λ2

i , so that the variance of the attribute variables is
1 in the prior [7]. This imposes an absolute scale, eliminating rescaling degeneracy. Slowly-varying
variables have a positive autocorrelation, and would thus have parametersλij between 0 and 1, with
larger values corresponding to slower variables.

Ideally, the dimensionalities of the model — the numbers of objects and associated attribute vari-
ables — are also learnt from data. We use a Bayesian approach to determine these values, in which
we assume anAutomatic Relevance Determination (ARD) prior over the weightsW [10, 11]:

P (W ) =
∏

ij

P (wij) =
∏

ij

N
(

0, diag(γij)
−1
)

. (8)

These zero-centered Gaussian priors discourage large weights. The widths of the distributions are
set by the precision hyperparametersγij which are learnt alongside the other parameters. Since the
weights of redundant attribute dimensions are free to matchthe prior, and as this is centred on the
origin, they are driven to zero. The precision hyperparameter can then diverge to infinity, effectively
pruning the weight from the model. As a result, only the dimensions of the attribute manifold that
are required to describe the data without overfitting remainactive after learning [10, 11].

For the rest of the parameters we choose conjugate priors (see the caption of Fig. 2)1. The complete
directed graphical model showing the dependencies betweenvariables is depicted in Figure 2.

1Conjugacy means that the posterior distribution has the same functional form as the prior, resulting in
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Figure 2: Directed graphical model. Circles represent random
variables, and rectangles represent hyperparameters. Gray shaded
elements are observed variables. The dashed plate indicates that
its content is replicatedT times (the length of an input sequence)
in the complete model. The prior over the input noise precision
1/σ2

y,k is a gamma distribution with parametersdk, ek, the prior
over the transition matrixTba is Dirichlet with parametersu(T ),
and the prior overλij is a nonstandard distribution (due to the cou-
pling between mean and variance ofst,ij) in the exponential family
that requires 4 hyperparameters to be specified (η, a, b, andc).

3 Learning

In the Bayesian formulation the parameters of the model are formally equivalent to latent variables,
differing only in that their number does not increase with the number of data points. The goal of
learning is then to infer the posterior joint distribution over variables and parameters given the data:

P (C,S,Θ|Y,Ξ) , (9)

whereΘ indicates the ensemble of all parameters andΞ all hyperparameters (in the following for
simplicity we will omit the dependency onΞ). Although this distribution is intractable (as in most
non-trivial models), it is possible to use astructured variational approximation to obtain a tractable
system. The idea is to introduce a new factored distributionQ(C,S,Θ) in which some dependencies
between the variables are neglected, while keeping the restof the distribution intact. Learning pro-
ceeds by functional minimization of the Kullback-Leibler divergence between the factorized and the
real posteriorKL(Q(C,S,Θ)||P (C,S,Θ|Y )). It can be shown that this minimization maximizes a
lower bound of the marginal likelihoodP (Y ) [11].

The key factorization underlying the Variational Bayes Expectation Maximization algorithm
(VBEM) [11] is the one between latent variables and parameters

P (C,S,Θ|Y ) = Q(C,S)Q(Θ) . (10)

Given this basic factorization, the algorithm proceeds by iteratively inferring the latent variable
distributionQ(C,S) given the observations and averaging over the parameters (E-Step), and the
parameter distributionQ(Θ) given the observations and averaging over the latents (M-Step). We
need two further factorizations to achieve a tractable algorithm: one between the distribution of
weights and input noise, and one between different identityvariables at different times. Note that
these approximations do not completely eliminate dependencies between the factorized variables,
which still influence each other through their sufficient statistics (for example their means). In
particular, the method is much less constraining than the commonly used approach of Maximum A
Posteriori (MAP) estimation, where the entire posterior distribution is collapsed to a single point
by taking the values of latents and parameters at the mode. Although the derivation of the learning
equations requires long algebraic computations, they are derived from the VBEM setting without
any noteworthy deviation, and are thus omitted here due to space limitations.

4 Results

In the following, we present the representation learned by the model when applied to natural videos
sequences, and compare it to the representation found in V1.The sources of our input data are the
CatCam videos [12], which consist of several minutes of recording taken from a camera mounted
on the head of a cat freely exploring a novel natural environment. Since some sections of the
video contain recording defects (block artifacts or pixel saturation) we selected a subset that showed
minimal distortion (labeledb0811lux in the dataset). Observations consist of the time-series of
pixel intensities in fixed windows of size20×20 pixels. The windows were placed to cover (without
overlaps) the central200×200 region of the video. In this way we obtained a total of about 300,000

tractable integrals. Conjugate priors are intuitively equivalent to having previously observed a number of imag-
inary pseudo-observations under the model. By choosing the number of pseudo-observations of the prior we
can regulate how informative the prior becomes.
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Figure 3: Basis vectors learned from natural videos. The basis vectorswij spanning the attribute manifold of
identity i are shown in theith column. Each weight vector is normalized to improve visibility. Gray, empty
boxes indicate weights that were pruned by the algorithm. Identity variablesare sorted by decreasing frequency
and the basis vectors are sorted by increasing precisionγij .

frames. The input data were preprocessed by removing the mean of each frame to eliminate global
changes in luminance and to compensate for the camera’s global gain control mechanism. The data
were then reduced in dimensionality from 400 to 81 dimensions with equalized variances, using
principal component analysis.

We initialized the model with 30 identity variables and attribute manifolds of 6 dimensions and let
the algorithm learn the model size by reducing the number of active attribute dimensions by ARD
hyperparameter optimization. The mean of the weightswij was initialized at random on the unit
sphere, and the priors over the parameters were chosen to be non-informative for the input noise
(1 pseudo-observation,σ2

y,k = (0.3)2) and more informative for the dynamic parameters (2000
pseudo-observations), favoring persistent identity variables and slowly-varying attributes (〈T00〉 =
0.9, 〈T11〉 = 0.8, 〈λi,1:ds

〉 = (0.3, . . . , 0.1)). We perform 500 VBEM iterations, using at each
iteration a new batch of 60 sequences of 50 frames taken at random from the entire dataset. After 300
iterations we start learning the precision parametersγij , updating their values every 20 iterations.

When presented with a new set of observations, the model infers a distribution over the values of
the latent identity and attribute variables. To make comparisons with neurons in the visual cortex,
we identified the mean of the distributions with the neural firing rate. This choice is necessarily
arbitrary, since we lack an established theory of how to map probabilistic models to neural hardware.
In particular, the brain is quite likely to represent more than a single value, carrying information
about uncertainty in order to be able to weight alternative interpretations of the data. Fortunately,
however, the model learns to infer the values of the latent variables with high confidence for stimuli
at high contrast. Thus, the probability distributions tended to concentrate around the mean, and
many different choices of neural correlates would give similar results.

Figure 3 shows the learned basis vectors. Each column displays the basis vectors of the attribute
manifold corresponding to one identity variable. Since themanifold is a hyperplane, each feature
is modeled by all linear combinations of the basis vectors (Fig. 4d). For every manifold, the basis
vectors are shaped like Gabor wavelets with similar position, orientation, and frequency, but dif-
ferent phase (Fig. 5a–c). Thus every point on the manifold has a similar shape, orientation, and
frequency but varies in phase (and possibly amplitude). Whenpresented with a drifting sine grating
of orientation and frequency similar to the one of the basis vectors, the probability of the feature be-
ing presentP (ct,i = 1|yt) rapidly approaches 1 and remains constant, while the attribute variables
oscillate to track the position of the sine grating on the manifold, as illustrated in Figure 4. Attribute
variables thus behave similarly to simple cells in V1, in that they respond optimally to a grating-like
stimulus and oscillate when its phase changes; while identity variables respond like complex cells,
being insensitive to the phase of their optimal stimulus.

To explore this connection further we compared properties of simple cells RFs in V1 as reported
in the physiological literature with the RFs of the attribute variables. Because the model (due to
the multiplicative interaction of identity and attribute variables) and the inference process (notably
because ofexplaining away effects) are nonlinear, we computed the best linear approximation to
the input-output function by linear regression using colored noise input. The resulting filters were
visually indistinguishable from the basis vectors in Figure 3 and are thus not shown. We then
computed the parameters for the resulting RFs by fitting a Gabor function to the filters.

Figure 5 (a–c) shows the distribution of orientation, frequency, and phase for each pair of RFs
belonging to the same identity variable (for instance, a variable with a 4D attribute manifold would
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contribute 6 points to each graph). Thinking that attributes corresponding to the same feature might
cluster in the visual cortex, we compared these plots to the data reported in [13] for pairs of simple
cells recorded from the same electrode in area 17 of the cat visual cortex (Fig. 5d–f). In both cases
we observed clustering of the pairs primarily in orientation and somewhat less in frequency, while
no relation was apparent in phase2. The distribution of preferred frequencies and orientations in the
attributes RFs are shown in Figure 6 (a,c). The distributionof frequencies is quite broad compared
to that found in models based on sparse coding or ICA [14, 15],where frequencies tends to cluster
around the highest representable value, and compares well with the width of the distribution in
simple cells (Fig. 6b) [16]. The joint distribution of orientation and frequency (Fig. 6d) covers
the parameter space relatively homogeneously. Note that the CatCam input data show less high-
frequency power at horizontal orientations, which is reflected in the results. Figure 6e shows the
joint distribution of RF width and length in normalized units (number of cycles) in our model and
for simple cell RFs as reported by Ringach [17] for area V1 in the macaque. The aspect ratios are
similar in both cases (again, unlike ICA results), althoughthe model results tend to have larger RFs,
possibly again due to the particular content of the video.

Initially, the algorithm learns a representation with attribute manifolds of full dimensionality. Many
attribute dimensions, however, are later found to be redundant or unnecessary, and are thus elim-
inated by the ARD prior. At the end of learning the representation is slightly overcomplete, with
96 basis vectors representing an 81-dimensional input space, and the dimensionality of each feature
manifold is typically between 2 and 4 (Fig. 7). This can be compared with the number of input
dimensions that influence the response of a complex cell, as estimated by the number of statisti-
cally significant non-zero eigenvalues in the Spike-Triggered Covariance matrix. Touryan et al. [18]
report a distribution of significant dimensions highly peaked at 2, with only a few complex cells
influenced by 1, 3, or 4 dimensions. However, they consider assignificant eigenvalues that are both
larger than expected by chanceand whose difference from the preceding eigenvalue is sufficiently
small. This latter criterion is arbitrary, and so we take their results to lower bound the actual dis-
tribution. Rust et al. [19] perform a similar analysis usingspatio-temporal stimuli and report 2 to 8
significant dimensions for complex cells. Since our weightsare instantaneous, and to represent tem-
poral changes would require additional dimensions, we takethis to be an upper bound. Moreover,
their distribution of significant dimensions is quite broad, which is consistent with our results3.

The posterior distributions over the dynamical parametersTba and λij confirm that the learned
causes are indeed stable in time. Another set of simulationsthat does not make use of the tem-
poral prior (not shown due to space constraints) results in amodel that requires more basis vectors
to describe the data but is in general inferior as measured byits free energy (the lower bound on the
marginal likelihood) and by its match to physiological data. Temporal stability seems thus to be an
important cue to recover external causes [cf. 4, 5].

2Phase difference is estimated here by fixing the global orientation and frequency of an identity to the one
of the best fitted RF, and re-fitting only the phase parameter to the RFs of theother attribute variables.

3The stimuli used in [19] were random bars fixed to the preferred orientation and size of the cells. The
learned RFs are thus fundamentally 2D (one spatial and one temporal dimension). Additional basis vectors that
would be needed to model changes in the RF in the direction of the optimal orientation could thus be missing.

Figure 4: Interpretation as complex and simple cells. (a) Basis vectors corresponding to one of the identity vari-
ables in the learnt model (no. 14 in Fig. 3). (b–d) Response to a drifting sine grating at the preferred orientation
and frequency. (b) Response of the identity variable,〈ct,14〉. (c) Response of the attribute variables,〈st,14 j〉.
(d) Response of the attribute variables as in (c), displayed as a trajectoryover the 3D attribute manifold.
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Figure 5: (a–c) Distribution of orientation, frequency, and phase for pairs of attributes belonging to the same
identity variable. (d–f) Similar plots for pairs of simple cells recorded fromthe same electrode in area 17 of the
cat visual cortex [13].

Figure 6: RF statistics. (a,c) Distribution of preferred frequency and orientation of the RFs of attribute variables
in our model. (b) Distribution of preferred frequency in simple cells area17 of the cat visual cortex [16].
(d) Joint distribution of preferred orientation and frequency in the model. (e) Comparison between the joint
distribution of RF width and length (in number-of-cycles units) in our modeland as reported by Ringach [17]
for cells in area V1 in the macaque.

5 Conclusions

We have proposed a generative model for images based on the fundamental duality between the
identity of an object or feature and its attributes. By explicitly considering the coupling between
these two aspects, it is possible to extract and bind together attributes that belong to the same object,
and at the same time construct an invariant representation of the object itself. We modeled identity
with a set of binary variables, each coding for the presence or absence of different objects or features.
Their attributes were described by a manifold parametrizedby a set of attribute variables. Identity
variables were assumed to be stable, and their attributes tovary smoothly in time. The interaction

Figure 7: Distribution of the dimensionality
of the attribute manifold. We considered ac-
tive attribute directions with precision parameter
〈γij〉 < 500.
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Figure 8: Schematic illustration of a two-layer
identity/attributes hierarchy. The dotted line rep-
resents cases where the attributes influence the
presence of objects parts. For example, in the case
a face seen from behind, node, mouth, and eyes
would not be visible and do not need to be gener-
ated.

between these two aspects was captured using a product nonlinearity that combines the two sets of
variables to generate the input. We were also interested in determining the size of the model, i.e.,
the number of attribute and identity variables required to optimally describe the input data. This was
achieved by performing a Bayesian analysis of the model and by defining appropriate priors over
the generating weights. As a result, after convergence, only the weights needed to effectively match
the data remained active and all redundant attribute directions were pruned out, avoiding overfitting
the input data. The algorithm was applied to natural image sequences, in order to learn a low-level
representation of visual scenes. The filters associated with the individual attribute variables were
shown to have characteristics similar to those of simple cells in V1. The RF of attributes associated
with the same identity variable had similar positions, orientations, and frequencies, but different
phases. As a consequence, the corresponding identity variable became invariant to phase change
and behaved like a complex cell.

In the standard energy model of complex cells and in several previous computational models, com-
plex and simple cells form a hierarchy. Simple cells have therole of subunits and are considered as
an intermediate step to build complex cells. Their phase-dependent information is then discarded as
a first step toward the construction of an invariant representation. Here complex and simple cells do
not form a hierarchy, but rather two parallel population of cells with two different functional roles:
the first coding for the presence or absence of oriented features in its RF, the latter parameterizing
some local parameters of the features (mainly their phase).This interpretation is reminiscent of a
what/where stream segregation at the level of the primary visual cortex.

The key motivation behind the proposal of a structured modelfor sensory input was the potential to
extract high-level causes from natural data. Figure 8 illustrates how the model might be extended in
a hierarchical way to achieve this goal. In the schematic, high-level identity variables representing,
for instance, entire objects generate lower-order entities, like parts of an object or image features.
For example, the activity of an identity variable corresponding to a face would activate with high
probability at the lower level variables coding for the presence of eyes, nose, and mouth. Similarly,
high-level attributes like the size and viewpoint of the face would influence low-level attributes like
the position of its individual parts. The hierarchy would berepeated down to individual image
features. Such a structure would allow the visual system to benefit from the advantages of a
Recognition-by-Components architecture, including the ability to reuse known parts to form novel
objects, and to express the wide range of possible configurations of articulate objects [20, 21]. The
implementation of such a hierarchical system to learn a representation of multiple, composite objects
will be the object of future work.
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