
On Sparsity and Overcompleteness in Image Models

Pietro Berkes, Richard Turner, and Maneesh Sahani
Gatsby Computational Neuroscience Unit, UCL

Alexandra House, 17 Queen Square, London WC1N 3AR

Abstract

Computational models of visual cortex, and in particular those based on sparse
coding, have enjoyed much recent attention. Despite this currency, the question
of how sparse or how over-complete a sparse representation should be, has gone
without principled answer. Here, we use Bayesian model-selection methods to ad-
dress these questions for a sparse-coding model based on a Student-t prior. Hav-
ing validated our methods on toy data, we find that natural images are indeed best
modelled by extremely sparse distributions; although for the Student-t prior, the
associated optimal basis size is only modestly over-complete.

1 Introduction

Computational models of visual cortex, and in particular those based on sparse coding, have re-
cently enjoyed much attention. The basic assumption behindsparse coding is that natural scenes are
composed of structural primitives (edges or lines, for example) and, although there are a potentially
large number of these primitives, typically only a few are active in a single natural scene (hence the
term sparse, [1, 2]). The claim is that cortical processing uses these statistical regularities to shape
a representation of natural scenes, and in particular converts the pixel-based representation at the
retina to a higher-level representation in terms of these structural primitives.

Traditionally, research has focused on determining the characteristics of the structural primitives and
comparing their representational properties with those ofV1. This has been a successful enterprise,
but as a consequence other important questions have been neglected. The two we focus on here
are: How large is the set of structural primitives best suited to describe all natural scenes (how
over-complete), and how many primitives are active in a single scene (how sparse)? We will also be
interested in the coupling between sparseness and over-completeness. The intuition is that, if there
are a great number of structural primitives, they can be veryspecific and only a small number will
be active in a visual scene. Conversely if there are a small number they have to be more general and
a larger number will be active on average. We attempt to map this coupling by evaluating models
with different over-completenesses and sparsenesses and discover where natural scenes live along
this trade-off (see Fig. 1).

In order to test the sparse coding hypothesis it is necessaryto build algorithms that both learn the
primitives and decompose natural scenes in terms of them. There have been many ways to derive
such algorithms, but one of the more successful is to regard the task of building a representation
of natural scenes as one of probabilistic inference. More specifically, the unknown activities of the
structural primitives are viewed as latent variables that must be inferred from the natural scene data.
Commonly the inference is carried out by writing down a generative model (although see [3] for an
alternative), which formalises the assumptions made aboutthe data and latent variables. The rules
of probability are then used to derive inference and learning algorithms.

Unfortunately the assumption that natural scenes are composed of a small number of structural
primitives is not sufficient to build a meaningful generative model. Other assumptions must therefore
be made and typically these are that the primitives occur independently, and combine linearly. These
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Figure 1: Schematic showing the space of possible sparse coding models in terms ofsparseness (increasing in
the direction of the arrow) and over-completeness. For reference, complete models lie along the dashed black
line. Ideally every model could be evaluated (e.g. via their marginal likelihood or cross-validation) and the
grey contours illustrate what we might expect to discover if this were possible: The solid black line illustrates
the hypothesised trade-off between over-completeness and sparsity,whilst the star shows the optimal point in
this trade-off.

are drastic approximations and it is an open question to whatextent this affects the results of sparse
coding. The distribution over the latent variablesxt,k is chosen to be sparse and typical choices
are Student-t, a Mixture of Gaussians (with zero means), andthe Generalised Gaussian (which
includes the Laplace distribution). The outputyt is then given by a linear combination of theK,
D-dimensional structural primitivesgk, weighted by their activities, plus some additive Gaussian
noise (the model reduces to independent components analysis in the absence of this noise [4]),

p(xt,k|α) = psparse(α) (1)

p(yt|xt,G) = Nyt
(Gxt,Σy) . (2)

The goal of this paper will be to learn the optimal dimensionality of the latent variables (K) and
the optimal sparseness of the prior (α). In order to do this a notion of optimality has to be defined.
One option is to train many different sparse-coding models and find the one which is most “similar”
to visual processing. (Indeed this might be a fair characterisation of much of the current activity in
field.) However, this is fraught with difficulty not least as it is unclear how recognition models map
to neural processes. We believe the more consistent approach is, once again, to use the Bayesian
framework and view this as a problem of probabilistic inference. In fact, if the hypothesis is that the
visual system is implementing an optimal generative model,then questions of over-completeness
and sparsity should be addressed in this context.

Unfortunately, this is not a simple task and quite sophisticated machine-learning algorithms have
to be harnessed in order to answer these seemingly simple questions. In the first part of this paper
we describe these algorithms and then validate them using artificial data. Finally, we present results
concerning the optimal sparseness and over-completeness for natural image patches in the case that
the prior is a Student-t distribution.

2 Model

As discussed earlier, there are many variants of sparse-coding. Here, we focus on the Student-t prior
for the latent variablesxt,k:
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Γ
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There are two main reasons for this choice: The first is that this is a widely used model [1]. The
second is that by implementing the Student-t prior using an auxiliary variable, all the distributions in
the generative model become members of the exponential family [5]. This means it is easy to derive
efficient approximate inference schemes like variational Bayes and Gibbs sampling.

The auxiliary variable method is based on the observation that a Student-t distribution is a continuous
mixture of zero-mean Gaussians, whose mixing proportions are given by a Gamma distribution over
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the precisions. This indicates that we can exchange the Student-t prior for a two-step prior in which
we first draw a precision from a Gamma distribution and then draw an activation from a Gaussian
with that precision,

p(ut,k|α, λ) = Gut,k

(

α

2
,

2

αλ2

)

, (4)

p(xt,k|ut,k) = Nxt,k

(

0, u−1
t,k

)

, (5)

p(yt|xt,G) = Nyt
(Gxt,Σy) , (6)

Σy := diag
(

σ2
y

)

. (7)

This model produces data which are often near zero, but occasionally highly non-zero. These non-
zero elements form star-like patterns, where the points of the star are determined by the direction of
the weights (e.g., Fig. 2).

One of the major technical difficulties posed by sparse-coding is that, in the over-complete regime,
the posterior distribution of the latent variablesp(X|Y, θ) is often complex and multi-modal. Ap-
proximation schemes are therefore required, but we must be careful to ensure that the scheme we
choose does not bias the conclusions we are trying to draw. This is true for any application of sparse
coding, but is particularly pertinent for our problem as we will be quantitatively comparing different
sparse-coding models.

3 Bayesian Model Comparison

A possible strategy for investigating the sparseness/over-completeness coupling would be to tile
the space with models and learn the parameters at each point (as schematised in Fig. 1). A model
comparison criterion could then be used to rank the models, and to find the optimal sparseness/over-
completeness. One such criterion would be to use cross validation and evaluate the likelihoods on
some held-out test data. Another is to use (approximate) Bayesian Model Comparison, and it is on
this method that we focus.

To evaluate the plausibility of two alternative versions ofa modelM, each with a different setting
of the hyperparametersΞ1 andΞ2, in the light of some dataY , we compute the evidence [6]:

p(M,Ξ1|Y )

p(M,Ξ2|Y )
=

p(Y |M,Ξ1)P (M,Ξ1)

p(Y |M,Ξ2)P (M,Ξ2)
. (8)

Since we do not have any reasona priori to prefer one particular configuration of hyperparameters
to another, we take the prior termsP (M,Ξi) to be equal, which leaves us with the ratio of the
marginal-likelihoods (or Bayes Factor),

P (Y |M,Ξ1)

P (Y |M,Ξ2)
, (9)

The marginal-likelihoods themselves are hard to compute, being formed from high dimensional
integrals over the latent variablesV and parametersΘ,

p(Y |M,Ξi) =

∫

dV dΘ p(Y, V,Θ|M,Ξi) (10)

=

∫

dV dΘ p(Y, V |Θ,M,Ξi)p(Θ|M,Ξi) . (11)

One concern in model comparison might be that the more complex models (those which are more
over-complete) have a larger number parameters and therefore ‘fit’ any data set better. However, the
Bayes factor (Eq. 9) implicitly implements a probabilisticversion of Occam’s razor that penalises
more complex models and mitigates this effect [6]. This makes the Bayesian method appealing for
determining the over-completeness of a sparse-coding model.

Unfortunately computing the marginal-likelihood is computationally intensive, and this precludes
tiling the sparseness/over-completeness space. However,an alternative is to learn the optimal over-
completeness at a given sparseness using automatic relevance determination (ARD) [7, 8]. The
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advantage of ARD is that it changes a hard and lengthy model comparison problem (i.e., computing
the marginal-likelihood for many models of differing dimensionalities) into a much simpler infer-
ence problem. In a nutshell, the idea is to equip the model with many more components than are
believed to be present in the data, and to let it prune out the weights which are unnecessary. Prac-
tically this involves placing a (Gaussian) prior over the components which favours small weights,
and then inferring the scale of this prior. In this way the scale of the superfluous weights is driven to
zero, removing them from the model. The necessary ARD hyper-priors are

p(gk|γk) = Ngk

(

0, γ−1
k

)

, (12)

p(γk) = Gγk
(θk, lk) . (13)

4 Determining the over-completeness: Variational Bayes

In the previous two sections we described a generative modelfor sparse coding that is theoretically
able to learn the optimal over-completeness of natural scenes. We have two distinct uses for this
model: The first, and computationally more demanding task, is to learn the over-completeness at a
variety of different, fixed, sparsenesses (that is, to find the optimal over-completeness in a vertical
slice through Fig. 1); The second is to determine the optimalpoint on this trade-off by evaluating
the (approximate) marginal-likelihood (that is, evaluating points along the trade-off line in Fig. 1 to
find the optimal model - the star). It turns out that no single method is able to solve both these tasks,
but that it is possible to develop a pair of approximate algorithms to solve them separately. The
first approximation scheme is Variational Bayes (VB), and itexcels at the first task, but is severely
biased in the case of the second. The second scheme is Annealed Importance Sampling (AIS) which
is prohibitively slow for the first task, but much more accurate on the second. We describe them in
turn, starting with VB.

The quantity required for learning is the marginal-likelihood,

log p(Y |M,Ξ) = log

∫

dV dΘ p(Y, V,Θ|M,Ξ). (14)

Computing this integral is intractable (for reasons similar to those given in Sec. 2), but a lower-
bound can be constructed by introducingany distribution over the latent variables and parameters,
q(V,Θ), and using Jensen’s inequality,

log p(Y |M,Ξ) ≥
∫

dV dΘ q(V,Θ) log
p(Y, V,Θ|M,Ξ)

q(V,Θ)
=: F(q(V,Θ)) (15)

= log p(Y |M,Ξ) − KL(q(V,Θ)||p(V,Θ|Y )) (16)

This lower-bound is called the free-energy, and the idea is to repeatedly optimise it with respect
to the distributionq(V,Θ) so that it becomes as close to the true marginal likelihood aspossible.
Clearly the optimal choice forq(V,Θ) is the (intractable) true posterior. However, by constraining
this distribution headway can be made. In particular if we assume that the set of parameters and
set of latent variables are independent in the posterior, sothat q(V,Θ) = q(V )q(Θ) then we can
sequentially optimise the free-energy with respect to eachof these distributions. For large hierar-
chical models, including the one described in this paper, itis often necessary to introduce further
factorisations within these two distributions in order to derive the updates. Their general form is,

q(Vi) ∝ exp 〈log p(V,Θ)〉q(Θ)
Q

j 6=i
q(Vi)

(17)

q(Θi) ∝ exp 〈log p(V,Θ)〉q(V )
Q

j 6=i
q(Θi)

. (18)

As the Bayesian Sparse Coding model is composed of distributions from the exponential family, the
functional form of these updates is the same as the corresponding priors. So, for example the latent
variables have the following form:q(xt) is Gaussian andq(ut,k) is Gamma distributed.

Although this approximation is good at discovering the over-completeness of data at fixed sparsities,
it provides an estimate of the marginal-likelihood (the free-energy) which is biased toward regions of
low sparsity. The reason is simple to understand. The difference between the free energy and the true
likelihood is given by the KL divergence between the approximate and true posterior. Thus, the free-
energy bound is tightest in regions whereq(V,Θ) is a good match to the true posterior, and loosest in
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regions where it is a poor match. At high sparsities, the trueposterior is multimodal and highly non-
Gaussian. In this regimeq(V,Θ) – which is always uni-modal – is a poor approximation. At low-
sparsities the prior becomes Gaussian-like and the posterior also becomes a uni-modal Gaussian.
In this regimeq(V,Θ) is an excellent approximation. This leads to a consistent bias in the peak of
the free-energy toward regions of low sparsity. One might also be concerned with another potential
source of bias: The number of modes in the posterior increases with the number of components
in the model, which gives a worse match to the variational approximation for more over-complete
models. However, because of the sparseness of the prior distribution, most of the modes are going
to be very shallow for typical inputs, so that this effect should be small. We verify this claim on
artificial data in Section 6.2.

5 Determining the sparsity: AIS

An approximation scheme is required to estimate the marginal-likelihood, but without a sparsity-
dependent bias. Any scheme which uses a uni-modal approximation to the posterior will inevitably
fall victim to such biases. This rules out many alternate variational schemes, as well as methods
like the Laplace approximation, or Expectation Propagation. One alternative might be to use a
variational method which has a multi-modal approximating distribution (e.g. a mixture model). The
approach taken here is to use Annealed Importance Sampling (AIS) [9] which is one of the few
methods for evaluating normalising constants of intractable distributions. The basic idea behind
AIS is to estimate the marginal-likelihood using importance sampling. The twist is that the proposal
distribution for the importance sampler is itself generated using an MCMC method. Briefly, this
inner loop starts by drawing samples from the model’s prior distribution and continues to sample
as the prior is deformed into the posterior, according to an annealing schedule. Both the details of
this schedule, and having a quick-mixing MCMC method, are critical for good results. In fact it is
simple to derive a quick-mixing Gibbs sampler for our application and this makes AIS particularly
appealing.

6 Results

Before tackling natural images, it is necessary to verify that the approximations can discover the
correct degree of over-completeness and sparsity in the case where the data are drawn from the
forward model. This is done in two stages: Firstly we focus ona very simple, low-dimensional
example that is easy to visualise and which helps explicate the learning algorithms, allowing them
to be tuned; Secondly, we turn to a larger scale example designed to be as similar to the tests on
natural data as possible.

6.1 Verification using simple artifical data

In the first experiment the training data are produced as follows: Two-dimensional observations
are generated by three Student-t sources with degree of freedom chosen to be2.5. The generative
weights are fixed to be 60 degrees apart from one another, as shown in Figure 2.

A series of VB simulations were then run, differing only in the sparseness level (as measured by
the degrees of freedom of the Student-t distribution overxt). Each simulation consisted of 500 VB
iterations performed on a set of 3000 data points randomly generated from the model. We initialised
the simulations withK = 7 components. To improve convergence, we started the simulations with
weights near the origin (drawn from a normal distribution with mean 0 and standard deviation10−8)
and a relatively large input noise variance, and annealed the noise variance between the iterations
of VBEM. The annealing schedule was as following: we startedwith σ2

y = 0.3 for 100 iterations,
reduced this linearly down toσ2

y = 0.1 in 100 iterations, and finally toσ2
y = 0.01 in a further 50

iterations. During the annealing process, the weights typically grew from the origin and spread in all
directions to cover the input space. After an initial growthperiod, where the representation usually
became as over-complete as allowed by the model, some of the weights rapidly shrank again and
collapsed to the origin. At the same time, the correspondingprecision hyperparameters grew and
effectively pruned the unnecessary components. We performed 7 blocks of simulations at different
sparseness levels. In every block we performed 3 runs of the algorithm and retained the result with
the highest free energy.
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Figure 2: Left: Test data drawn from the simple artificial model. Centre: Free energy of the models learned by
VBEM in the artificial data case. Right: Estimated log marginal likelihood. Error bars are 3 times the estimated
standard deviation.

The marginal likelihoods of the selected results were then estimated using AIS. We derived the
importance weights using a fixed data set with 2500 data points, 250 samples, and 300 intermediate
distributions. Following the recommendations in [9], the annealing schedule was chosen to be linear
initially (with 50 inverse temperatures spaced uniformly from 0 to 0.01), followed by a geometric
section (250 inverse temperatures spaced geometrically from 0.01 to 1). This mean that there were
a total of 300 distributions between the prior and posterior.

The results indicate that the combination of the two methodsis successful at learning both the over-
completeness and sparseness. In particular the VBEM algorithm was able to recover the correct
dimensionality for all sparseness levels, except for the sparsest caseα = 2.1, where it preferred a
model with 5 significant components. As expected, however, figure 2 shows that the maximum free
energy is biased toward the more Gaussian models. In contrast to this, the marginal likelihood esti-
mated by AIS (Fig. 2), which is strictly greater than the free-energy as expected, favours sparseness
levels close to the true value.

6.2 Verification using complex artificial data

Although it is necessary that the inference scheme should pass simple tests like that in the previous
section, they are not sufficient to give us confidence that it will perform successfully on natural
data. One pertinent criticism is that the regime in which we tested the algorithms in the previous
section (two dimensional observations, and three hidden latents) is quite different from that required
to model natural data. To that end, in this section we first learn a sparse model for natural images
with fixed over-completeness levels using a Maximum A Posteriori (MAP) algorithm [2] (degree
of freedom2.5). These solutions are then used to generate artificial data as in the previous section.
The goal is to validate the model on data which has a content and scale similar to the natural images
case, but with a controlled number of generative components.

The image data comprised patches of size9 × 9 pixels, taken at random positions from 36 natural
images randomly selected from the van Hateren database (preprocessed as described in [10]). The
patches were whitened and their dimensionality reduced from 81 to 36 by principal component
analysis. The MAP solution was trained for 500 iterations, with every iteration performed on a new
batch of 1440 patches (100 patches per image).

The model was initialised with a 3-times over-complete number of components (K = 108). As
above, the weights were initialised near the origin, and theinput noise was annealed linearly from
σd = 0.5 to σd = 0.2 in the first 300 iterations, remaining constant thereafter.Every run consisted
of 500 VBEM iterations, with every iteration performed on 3600 patches generated from the MAP
solution. We performed several simulations for over-completeness levels between 0.5 and 4.5, and
retained the solutions with the highest free energy.

The results are summarised in Figure 3: The model is able to recover the underlying dimensionality
for data between 0.5 and 2 times over-complete, and correctly saturates to 3 times over-complete
(the maximum attainable level here) when the data over-completeness exceeds 3. In the regime
between 2.5 and 3 times over-complete data, the model returns solutions with a smaller number of
components, which is possibly due to the bias described at the end of Section 5. However, these
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Figure 3: True versus inferred over-completeness from data drawn from the forward model trained on natural
images. If inference was perfect, the true over-completeness would be recovered (black line). This straight
line saturates when we hit the number of latent variables with which ARD was initialised (three times over-
complete). The results using multiple runs of ARD are close to this line (open circles, simulations with the
highest free-energy are shown as closed circles). The maximal andbest over-completeness inferred from natural
scenes is shown by the dotted line, and lies well below the over-completenesses we are able to infer.

values are still far above the highest over-completeness learned from natural images (see section
6.3), so that we believe that the bias does not invalidate ourconclusions.

6.3 Natural images

Having established that the model performs as expected, at least when the data is drawn from the
forward model, we now turn to natural image data and examine the optimal over-completeness ratio
and sparseness degree for natural scene statistics.

The image data for this simulation and the model initialisation and annealing procedure are identical
to the ones in the experiments in the preceeding section. We performed 20 simulations with different
sparseness levels, especially concentrated on the more sparse values. Every run comprised 500
VBEM iterations, with every iteration performed on a new batch of 3600 patches.

As shown in Figure 4, the free energy increased almost monotonically untilα = 5 and then stabilised
and started to decrease for more Gaussian models. The algorithm learnt models that were only
slightly over-complete: the over-completeness ratio was distributed between 1 and 1.3, with a trend
for being more over-complete at high sparseness levels (Fig. 4). Although this general trend accords
with the intuition that sparseness and over-completeness are coupled, both the magnitude of the
effect and the degree of over-completeness is smaller than might have been anticipated. Indeed, this
result suggests that highly over-complete models with a Student-t prior may very well be overfitting
the data.

Finally we performed AIS using the same annealing schedule as in Section 6.1, using 250 samples
for the first 6 sparseness levels and 50 for the successive 14.The estimates obtained for the log
marginal likelihood, shown in Figure 4, were monotonicallyincreasing with increasing sparseness
(decreasingα). This indicates that sparse models are indeed optimal for natural scenes. Note that
this is exactly the opposite trend to that of the free energy,indicating that it is also biased for natural
scenes. Figure 4 shows the basis vectors learned in the simulation with α = 2.09, which had
maximal marginal likelihood. The weights resemble the Gabor wavelets, typical of sparse codes for
natural images [1].

7 Discussion

Our results suggest that the optimal sparse-coding model for natural scenes is indeed one which
is very sparse, but only modestly over-complete. The anticipated coupling between the degree of
sparsity and the over-completeness in the model is visible,but is weak.

One crucial question is how far these results will generalise to other prior distributions; and indeed,
which of the various possible sparse-coding priors is best able to capture the structure of natural
scenes. One indication that the Student-t might not be optimal, is its behaviour as the degree-of-
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Figure 4: Natural images results. a) Free energy b) Marginal likelihood c) Estimated over-completeness d)
Basis vectors

freedom parameter moves towards sparser values. The distribution puts a very small amount of
mass at a very great distance from the mean (for example, the kurtosis is undefined forα < 4). It
is not clear that data with such extreme values will be encountered in typical data sets, and so the
model may become distorted at high sparseness values.

Future work will be directed towards more general prior distributions. The formulation of the
Student-t in terms of a random precision Gaussian is computationally helpful. While no longer
within the exponential family, other distributions on the precision (such as a uniform one) may be
approximated using a similar approach.
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