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Abstract

Computational models of visual cortex, and in particularsth based on sparse
coding, have enjoyed much recent attention. Despite thi®iay, the question
of how sparse or how over-complete a sparse representdtinidsbe, has gone
without principled answer. Here, we use Bayesian mode&lesieh methods to ad-
dress these questions for a sparse-coding model based aden&t prior. Hav-
ing validated our methods on toy data, we find that naturaggsare indeed best
modelled by extremely sparse distributions; although ler $tudent-t prior, the
associated optimal basis size is only modestly over-comple

1 Introduction

Computational models of visual cortex, and in particulaysth based on sparse coding, have re-
cently enjoyed much attention. The basic assumption bedpadse coding is that natural scenes are
composed of structural primitives (edges or lines, for exajnand, although there are a potentially

large number of these primitives, typically only a few aréwacin a single natural scene (hence the

term sparse, [1, 2]). The claim is that cortical processisgsuthese statistical regularities to shape
a representation of natural scenes, and in particular ctntlee pixel-based representation at the
retina to a higher-level representation in terms of thesestral primitives.

Traditionally, research has focused on determining theacheristics of the structural primitives and
comparing their representational properties with thosélofThis has been a successful enterprise,
but as a consequence other important questions have belattedg The two we focus on here
are: How large is the set of structural primitives best slite describe all natural scenes (how
over-complete), and how many primitives are active in alsisgene (how sparse)? We will also be
interested in the coupling between sparseness and ovegletmmess. The intuition is that, if there
are a great number of structural primitives, they can be specific and only a small number will
be active in a visual scene. Conversely if there are a smaibeu they have to be more general and
a larger number will be active on average. We attempt to mapcthupling by evaluating models
with different over-completenesses and sparsenessesisoayer where natural scenes live along
this trade-off (see Fig. 1).

In order to test the sparse coding hypothesis it is necessdwyild algorithms that both learn the
primitives and decompose natural scenes in terms of therareTtave been many ways to derive
such algorithms, but one of the more successful is to rededask of building a representation
of natural scenes as one of probabilistic inference. Moegifipally, the unknown activities of the
structural primitives are viewed as latent variables thastie inferred from the natural scene data.
Commonly the inference is carried out by writing down a gatiee model (although see [3] for an
alternative), which formalises the assumptions made atheutlata and latent variables. The rules
of probability are then used to derive inference and legraigorithms.

Unfortunately the assumption that natural scenes are ceetpof a small number of structural
primitives is not sufficient to build a meaningful generatimodel. Other assumptions must therefore
be made and typically these are that the primitives occueprddently, and combine linearly. These
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Figure 1: Schematic showing the space of possible sparse coding models in tesperséness (increasing in
the direction of the arrow) and over-completeness. For referenoglete models lie along the dashed black
line. Ideally every model could be evaluated (e.g. via their marginal ligetihor cross-validation) and the
grey contours illustrate what we might expect to discover if this wereilplessThe solid black line illustrates
the hypothesised trade-off between over-completeness and sparlsis,the star shows the optimal point in
this trade-off.

are drastic approximations and it is an open question to extant this affects the results of sparse
coding. The distribution over the latent variables, is chosen to be sparse and typical choices
are Student-t, a Mixture of Gaussians (with zero means),thedseneralised Gaussian (which
includes the Laplace distribution). The outputis then given by a linear combination of tt€,
D-dimensional structural primitivegy,, weighted by their activities, plus some additive Gaussian
noise (the model reduces to independent components amalythie absence of this noise [4]),

p(xt,k|a) = psparse(a) (1)

p(yelxe, G) = Ny (Gx¢, By) . (2)
The goal of this paper will be to learn the optimal dimensliypaf the latent variablesK) and
the optimal sparseness of the priaf).( In order to do this a notion of optimality has to be defined.
One option is to train many different sparse-coding modedsfand the one which is most “similar”
to visual processing. (Indeed this might be a fair char&zagon of much of the current activity in
field.) However, this is fraught with difficulty not least @sg unclear how recognition models map
to neural processes. We believe the more consistent agpr®acnce again, to use the Bayesian
framework and view this as a problem of probabilistic infere. In fact, if the hypothesis is that the
visual system is implementing an optimal generative mattheln questions of over-completeness
and sparsity should be addressed in this context.

Unfortunately, this is not a simple task and quite sophaséid machine-learning algorithms have
to be harnessed in order to answer these seemingly simpiiopg In the first part of this paper
we describe these algorithms and then validate them usiifigial data. Finally, we present results
concerning the optimal sparseness and over-completemesatfiral image patches in the case that
the prior is a Student-t distribution.

2 Model

As discussed earlier, there are many variants of sparseg.ddere, we focus on the Student-t prior
for the latent variables, j:
T (2£2) 1 a2\ 2
Ja,A) = ———2 7 1+(~’)) 3

b)) = 5t (144 (% ©
There are two main reasons for this choice: The first is thatisha widely used model [1]. The
second is that by implementing the Student-t prior usinguedliary variable, all the distributions in
the generative model become members of the exponentidlffshi This means it is easy to derive
efficient approximate inference schemes like variatiorstd® and Gibbs sampling.

The auxiliary variable method is based on the observatiaretistudent-t distribution is a continuous
mixture of zero-mean Gaussians, whose mixing proportioagizen by a Gamma distribution over



the precisions. This indicates that we can exchange theBtgbrior for a two-step prior in which
we first draw a precision from a Gamma distribution and thewwdin activation from a Gaussian
with that precision,

2
plueslasn) =05 32 ). @
p(l’t,klut,k) = Nwt,k(07u;;) ) (5)
p(yixe, G) = Ny, (Gxy, By, (6)
Xy = diag(afl) . @)

This model produces data which are often near zero, but meedly highly non-zero. These non-
zero elements form star-like patterns, where the pointeeétar are determined by the direction of
the weights (e.g., Fig. 2).

One of the major technical difficulties posed by sparse+upd that, in the over-complete regime,
the posterior distribution of the latent variablgsX|Y, 6) is often complex and multi-modal. Ap-
proximation schemes are therefore required, but we musatedut to ensure that the scheme we
choose does not bias the conclusions we are trying to dra.igtrue for any application of sparse
coding, but is particularly pertinent for our problem as wi#t be quantitatively comparing different
sparse-coding models.

3 Bayesian Model Comparison

A possible strategy for investigating the sparsenessfomepleteness coupling would be to tile
the space with models and learn the parameters at each peistiiematised in Fig. 1). A model
comparison criterion could then be used to rank the modetst@find the optimal sparseness/over-
completeness. One such criterion would be to use crossatialidand evaluate the likelihoods on
some held-out test data. Another is to use (approximateg8ag Model Comparison, and it is on
this method that we focus.

To evaluate the plausibility of two alternative versionsaahodel M, each with a different setting

of the hyperparameteks; and=,, in the light of some dat&’, we compute the evidence [6]:
p(M,Z:Y)  p(Y|M,E2) P(M, Z2)

Since we do not have any reasapriori to prefer one particular configuration of hyperparameters

to another, we take the prior ternf¥ M, =;) to be equal, which leaves us with the ratio of the

marginal-likelihoods (or Bayes Factor),

P(Y|M,E1)
P(Y|M, =)’

The marginal-likelihoods themselves are hard to computmgoformed from high dimensional
integrals over the latent variabl&sand parameter®,

9)

p(YIM,Z,) = / dvde p(v,V,0|M, =,) (10)
- / dVde p(Y, V|0, M, Z)p(O|M, Z.) . (11)

One concern in model comparison might be that the more commtalels (those which are more
over-complete) have a larger number parameters and theréfoany data set better. However, the
Bayes factor (Eq. 9) implicitly implements a probabilistiersion of Occam’s razor that penalises
more complex models and mitigates this effect [6]. This nsake Bayesian method appealing for
determining the over-completeness of a sparse-coding Imode

Unfortunately computing the marginal-likelihood is contgionally intensive, and this precludes
tiling the sparseness/over-completeness space. Hovegvaltternative is to learn the optimal over-
completeness at a given sparseness using automatic rededatermination (ARD) [7, 8]. The



advantage of ARD is that it changes a hard and lengthy moaebadson problem (i.e., computing
the marginal-likelihood for many models of differing dingonalities) into a much simpler infer-
ence problem. In a nutshell, the idea is to equip the modél miny more components than are
believed to be present in the data, and to let it prune out #hights which are unnecessary. Prac-
tically this involves placing a (Gaussian) prior over thenpmnents which favours small weights,
and then inferring the scale of this prior. In this way thelscd the superfluous weights is driven to
zero, removing them from the model. The necessary ARD hppers are

p(gel) = N (0,7, 1), (12
p(%) = g%(gk’ lk) . (13)

4 Determining the over-completeness: Variational Bayes

In the previous two sections we described a generative nfodsparse coding that is theoretically
able to learn the optimal over-completeness of naturalegeklVe have two distinct uses for this
model: The first, and computationally more demanding tastq learn the over-completeness at a
variety of different, fixed, sparsenesses (that is, to fimddptimal over-completeness in a vertical
slice through Fig. 1); The second is to determine the optipoait on this trade-off by evaluating
the (approximate) marginal-likelihood (that is, evalogtpoints along the trade-off line in Fig. 1 to
find the optimal model - the star). It turns out that no singktmod is able to solve both these tasks,
but that it is possible to develop a pair of approximate athors to solve them separately. The
first approximation scheme is Variational Bayes (VB), angkitels at the first task, but is severely
biased in the case of the second. The second scheme is Adih@glertance Sampling (AlS) which
is prohibitively slow for the first task, but much more acdaran the second. We describe them in
turn, starting with VB.

The quantity required for learning is the marginal-likeldd,
log p(Y|M, E) = log /dVd@ p(Y,V,0|M,E). (14)
Computing this integral is intractable (for reasons simitathose given in Sec. 2), but a lower-

bound can be constructed by introducemty distribution over the latent variables and parameters,
q(V, ©), and using Jensen’s inequality,

logp(Y|M,E) > /dVd@ q(V,0)log W =: F(q(V,0)) (15)
=logp(Y|M,E) — KL(q(V,0)||p(V, 6]Y)) (16)

This lower-bound is called the free-energy, and the idea iepeatedly optimise it with respect
to the distributiong(V, ©) so that it becomes as close to the true marginal likelihoopoasible.
Clearly the optimal choice foj(V, ©) is the (intractable) true posterior. However, by constrajn
this distribution headway can be made. In particular if weuage that the set of parameters and
set of latent variables are independent in the posteriothaioy(V, 0) = ¢(V)q(©) then we can
sequentially optimise the free-energy with respect to eddhese distributions. For large hierar-
chical models, including the one described in this papas, @ften necessary to introduce further
factorisations within these two distributions in order &ride the updates. Their general form is,

q(Vi) ocexp (log p(V, ©)) g0y 11, a(vi) (17)
q(©;) o< exp (log p(V, @)>q(v) I, () (18)

As the Bayesian Sparse Coding model is composed of distitsifrom the exponential family, the
functional form of these updates is the same as the corrdgmppriors. So, for example the latent
variables have the following formy(x;) is Gaussian angl(u, ;) is Gamma distributed.

Although this approximation is good at discovering the es@mpleteness of data at fixed sparsities,
it provides an estimate of the marginal-likelihood (thestienergy) which is biased toward regions of
low sparsity. The reason is simple to understand. The diffeg between the free energy and the true
likelihood is given by the KL divergence between the appmade and true posterior. Thus, the free-
energy bound is tightest in regions whet&’, ©) is a good match to the true posterior, and loosest in



regions where it is a poor match. At high sparsities, the pasterior is multimodal and highly non-
Gaussian. In this regimgV, ©) — which is always uni-modal — is a poor approximation. At low-
sparsities the prior becomes Gaussian-like and the postgo becomes a uni-modal Gaussian.
In this regimeg(V, ©) is an excellent approximation. This leads to a consisteas Ivi the peak of
the free-energy toward regions of low sparsity. One might &le concerned with another potential
source of bias: The number of modes in the posterior inceeadth the number of components
in the model, which gives a worse match to the variationat@amation for more over-complete
models. However, because of the sparseness of the pridbdigin, most of the modes are going
to be very shallow for typical inputs, so that this effect gldobe small. We verify this claim on
artificial data in Section 6.2.

5 Determining the sparsity: AIS

An approximation scheme is required to estimate the marjkeihood, but without a sparsity-
dependent bias. Any scheme which uses a uni-modal apprboaimta the posterior will inevitably
fall victim to such biases. This rules out many alternateatimmal schemes, as well as methods
like the Laplace approximation, or Expectation Propagati®ne alternative might be to use a
variational method which has a multi-modal approximatirgiribution (e.g. a mixture model). The
approach taken here is to use Annealed Importance Sam@i®) [9] which is one of the few
methods for evaluating normalising constants of intrdetalistributions. The basic idea behind
AIS is to estimate the marginal-likelihood using importasampling. The twist is that the proposal
distribution for the importance sampler is itself genedaising an MCMC method. Briefly, this
inner loop starts by drawing samples from the model’s pristrithution and continues to sample
as the prior is deformed into the posterior, according torarealing schedule. Both the details of
this schedule, and having a quick-mixing MCMC method, articeat for good results. In fact it is
simple to derive a quick-mixing Gibbs sampler for our apgtiicn and this makes AlS particularly
appealing.

6 Results

Before tackling natural images, it is necessary to verifgt e approximations can discover the
correct degree of over-completeness and sparsity in the where the data are drawn from the
forward model. This is done in two stages: Firstly we focusaovery simple, low-dimensional
example that is easy to visualise and which helps expli¢etdearning algorithms, allowing them
to be tuned; Secondly, we turn to a larger scale example wegditp be as similar to the tests on
natural data as possible.

6.1 \Verification using simple artifical data

In the first experiment the training data are produced asv@i Two-dimensional observations
are generated by three Student-t sources with degree afdireehosen to be.5. The generative
weights are fixed to be 60 degrees apart from one anotherpasmsh Figure 2.

A series of VB simulations were then run, differing only ireteparseness level (as measured by
the degrees of freedom of the Student-t distribution eygr Each simulation consisted of 500 VB
iterations performed on a set of 3000 data points randomigigeed from the model. We initialised
the simulations with' = 7 components. To improve convergence, we started the siimosgatvith
weights near the origin (drawn from a normal distributiothwiean 0 and standard deviatiteT )
and a relatively large input noise variance, and annealechtise variance between the iterations
of VBEM. The annealing schedule was as following: we stavtét a = 0.3 for 100 iterations,
reduced this linearly down t02 = 0.1 in 100 iterations, and finally tz’r2 = 0.01 in a further 50
iterations. During the anneallng process, the weightallyi grew from the origin and spread in all
directions to cover the input space. After an initial groywtriod, where the representation usually
became as over-complete as allowed by the model, some ofdlyhts rapidly shrank again and
collapsed to the origin. At the same time, the correspongiiegision hyperparameters grew and
effectively pruned the unnecessary components. We pegibifrblocks of simulations at different
sparseness levels. In every block we performed 3 runs ofigfoeitam and retained the result with
the highest free energy.
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Figure 2: Left: Test data drawn from the simple artificial model. Centre: Freeggrafrthe models learned by
VBEM in the artificial data case. Right: Estimated log marginal likelihood. Eyews are 3 times the estimated
standard deviation.

The marginal likelihoods of the selected results were thaimated using AIS. We derived the
importance weights using a fixed data set with 2500 data §d280 samples, and 300 intermediate
distributions. Following the recommendations in [9], tmaaling schedule was chosen to be linear
initially (with 50 inverse temperatures spaced unifornmryni 0 to 0.01), followed by a geometric
section (250 inverse temperatures spaced geometricalty .01 to 1). This mean that there were
a total of 300 distributions between the prior and posterior

The results indicate that the combination of the two meth®dsccessful at learning both the over-
completeness and sparseness. In particular the VBEM #igonvas able to recover the correct
dimensionality for all sparseness levels, except for tleesgst case = 2.1, where it preferred a
model with 5 significant components. As expected, howegurd 2 shows that the maximum free
energy is biased toward the more Gaussian models. In cotartgs, the marginal likelihood esti-
mated by AIS (Fig. 2), which is strictly greater than the fexeergy as expected, favours sparseness
levels close to the true value.

6.2 Verification using complex artificial data

Although it is necessary that the inference scheme shoulsl simple tests like that in the previous
section, they are not sufficient to give us confidence thatilltperform successfully on natural
data. One pertinent criticism is that the regime in which estdd the algorithms in the previous
section (two dimensional observations, and three hiddents) is quite different from that required
to model natural data. To that end, in this section we firahnl@asparse model for natural images
with fixed over-completeness levels using a Maximum A PastefMAP) algorithm [2] (degree
of freedom2.5). These solutions are then used to generate artificial datathe previous section.
The goal is to validate the model on data which has a contehseale similar to the natural images
case, but with a controlled nhumber of generative components

The image data comprised patches of $ize 9 pixels, taken at random positions from 36 natural
images randomly selected from the van Hateren databaggrdpessed as described in [10]). The
patches were whitened and their dimensionality reduceah 8& to 36 by principal component
analysis. The MAP solution was trained for 500 iterationishwvery iteration performed on a new
batch of 1440 patches (100 patches per image).

The model was initialised with a 3-times over-complete namiif componentsK = 108). As
above, the weights were initialised near the origin, andrpeat noise was annealed linearly from
oq = 0.5t0 o4 = 0.2 in the first 300 iterations, remaining constant thereaff®ery run consisted

of 500 VBEM iterations, with every iteration performed on0BGpatches generated from the MAP
solution. We performed several simulations for over-cateiess levels between 0.5 and 4.5, and
retained the solutions with the highest free energy.

The results are summarised in Figure 3: The model is ablectivez the underlying dimensionality
for data between 0.5 and 2 times over-complete, and coyreatlrates to 3 times over-complete
(the maximum attainable level here) when the data over-teteness exceeds 3. In the regime
between 2.5 and 3 times over-complete data, the model eetintions with a smaller number of
components, which is possibly due to the bias describedeagiidl of Section 5. However, these
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Figure 3: True versus inferred over-completeness from data drawn fronothaeafd model trained on natural
images. If inference was perfect, the true over-completeness weutddovered (black line). This straight
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complete). The results using multiple runs of ARD are close to this line (opeles; simulations with the
highest free-energy are shown as closed circles). The maximakmtdver-completeness inferred from natural
scenes is shown by the dotted line, and lies well below the over-complsé=nes are able to infer.

values are still far above the highest over-completenessidel from natural images (see section
6.3), so that we believe that the bias does not invalidateonclusions.

6.3 Natural images

Having established that the model performs as expectedast When the data is drawn from the
forward model, we now turn to natural image data and exanme®ptimal over-completeness ratio
and sparseness degree for natural scene statistics.

The image data for this simulation and the model initiaicgatind annealing procedure are identical
to the ones in the experiments in the preceeding section.efflermed 20 simulations with different
sparseness levels, especially concentrated on the morgespalues. Every run comprised 500
VBEM iterations, with every iteration performed on a newdbadf 3600 patches.

As shown in Figure 4, the free energy increased almost maiazity until « = 5 and then stabilised
and started to decrease for more Gaussian models. Thethigdearnt models that were only
slightly over-complete: the over-completeness ratio wasibduted between 1 and 1.3, with a trend
for being more over-complete at high sparseness levels4Fid\lthough this general trend accords
with the intuition that sparseness and over-completenessaupled, both the magnitude of the
effect and the degree of over-completeness is smaller thgint tmave been anticipated. Indeed, this
result suggests that highly over-complete models with détti prior may very well be overfitting
the data.

Finally we performed AIS using the same annealing schediia &ection 6.1, using 250 samples
for the first 6 sparseness levels and 50 for the successivd lid.estimates obtained for the log
marginal likelihood, shown in Figure 4, were monotonicafigreasing with increasing sparseness
(decreasingy). This indicates that sparse models are indeed optimaldtural scenes. Note that
this is exactly the opposite trend to that of the free eneérgljcating that it is also biased for natural
scenes. Figure 4 shows the basis vectors learned in theadiomulwith o = 2.09, which had
maximal marginal likelihood. The weights resemble the Gatwvelets, typical of sparse codes for
natural images [1].

7 Discussion

Our results suggest that the optimal sparse-coding modeldtural scenes is indeed one which
is very sparse, but only modestly over-complete. The gateid coupling between the degree of
sparsity and the over-completeness in the model is vidiloieis weak.

One crucial question is how far these results will genegatisother prior distributions; and indeed,
which of the various possible sparse-coding priors is bekt 80 capture the structure of natural
scenes. One indication that the Student-t might not be @ptii® its behaviour as the degree-of-
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freedom parameter moves towards sparser values. Thebdigtn puts a very small amount of
mass at a very great distance from the mean (for example,utesis is undefined fott < 4). It

is not clear that data with such extreme values will be ened in typical data sets, and so the
model may become distorted at high sparseness values.

Future work will be directed towards more general prior ritistions. The formulation of the
Student-t in terms of a random precision Gaussian is cortipaoddly helpful. While no longer
within the exponential family, other distributions on theegision (such as a uniform one) may be
approximated using a similar approach.
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