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Here we define       to be linear functions, and      to be the 

sum of its arguments, which leads to the bilinear mapping:

(Tenenbaum & Freeman, 2000,

Grimes & Rao, 2005, Dayan, 2006)

Model details

Instead of learning the Maximum Likelihood solution for the parameters, we adopt a 

Bayesian analysis and integrate (approximately) over a distribution of model param-

eters. This can be combined with an Automatic Relevance Determination prior over 

the weights in order to learn the size of the model, i.e., the number of contents and the 

dimensionality of the style manifolds (Beal, 2003). 

The prior on the generative weights is Gaussian with mean zero:

After an initial phase, we start learning the precision parameters. For style dimensions 

that are redundant or not useful, the precision diverges to infinity, forcing the corre-

sponding style basis vector to 0.  This then provides an automatic determination of the 

dimensionality of each content manifold.

We choose conjugate priors for the rest of the parameters, set to be rather noninforma-

tive for the input noise and more informative for the dynamic parameters, favouring 

persistent contents and slowly-varying styles.

Learning is performed using Variational Bayesian Expectation Maximization (VBEM) 

(Beal, 2003): Inference is performed keeping the whole distribution over parameters 

and latent variables (as opposed for example to zero-temperature EM). The posterior 

joint distribution is made tractable by factorizing it into tractable factors, the key VBEM 

factorization being the one between model parameters and latent variables:

(Turner & Sahani, 2007)

Content model

Style model

Contents are modeled as independent, binary Markov chains:

Styles are modeled as Linear Dynamical System, with mean and variance parameters 

coupled such that the prior variance is 1:

With dynamical parameters

We introduced three additional factorizations: between the distribution of weights be-

longing to different contents, between weights and input noise, and between different 

contents at different times. All other factorizations arise naturally.

Response to drifting sine gratings

Introduction

Representation of the environment in the sensory 

cortex:

- How is it structured?

- Which principles underlie its organization?

Basic assumption:

- The goal of the sensory system is to reconstruct the 

external causes of the sensory input, which is in the end 

the information needed to guide behavior => The inter-

nal representation should mirror the basic semantics 

and structure of the environment.

- Its organization should thus be consistent with some 

prior knowledge about the basic properties of the exter-

nal causes

Previously proposed prior structure:

- Independence, sparseness (Olshausen & Field, 1996; 

Bell & Sejnowski, 1997; Hyvärinen & Hoyer, 2000)

- Temporal stability, predictability (Rao & Ballard, 1999; 

Hurri & Hyvärinen, 2003; Körding et al., 2004; Berkes & 

Wiskott, 2005)

- Spatio-temporal “bubbles” (Hyvärinen et al., 2003)

- Bilinear sparse model with global shift variables 

(Grimes & Rao, 2005)

We propose a model based on:

- Discreteness and persistence in time of objects

- Duality of identity (absence/presence of an object or 

feature) and attributes (position, orientation, view-

point, ...). These two aspects have different semantics 

and should be modeled accordingly.  Both are necessary 

to build invariant representations and to bind attributes 

that refer to a single object together.  
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Statistics of the posterior distribution over parameters
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Simulation results

Simulation

Input data: subset of the CatCam videos (Betsch et al., 

2004) - several minutes of recordings taken from a camera 

mounted on the head of a freely-behaving cat. Observa-

tions consist of the pixel intensities in fixed windows of 

size 20x20 pixels.

Content and style variables can be interpreted as complex and simple cells in V1. The model sug-

gests that these form two parallel cell populations (as opposed to the classical hierarchical view) and 

have two distinct functional roles.

Receptive field statistics

In the plots below, we identify the mean of the style variables with the firing rate of simple cells. 

Simulation data is reported for style variables in the same subspace, while the physiological data 

from DeAngelis et al. (1999) is for simple cells on the same electrode.

Contents are assumed to be independent  but individually 

persistent, with styles that vary smoothly over time.

We formulate this model in a probabilistic framework, 

which allows us:

- to keep the number of assumptions to a minimum

- to represent uncertainty about the inferred status of the 

environment

- to learn the size of the model, i.e. number of contents 

and dimensionality of the content manifold
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- Conceptually similar to the what/where segregation 

of the visual stream

- This representation might also be related to some 

psychophysical effects, like for example temporal ver-

sions of the tilt illusion (see proof-of-concept in the 

bottom right corner)

Bilinear model

Normalized basis vectors 

before precision learning
Final basis vectors

Style basis

(sorted by increasing
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Style basis
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96 directions remain (slightly overcomplete representation)
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Tilt illusion - Proof-of-concept simulation


