Introduction

Representation of the environment in the sensory
cortex:

- How is it structured?

- Which principles underlie its organization?

Basic assumption:

- The goal of the sensory system is to reconstruct the
external causes of the sensory input, which is in the end
the information needed to guide behavior => The inter-
nal representation should mirror the basic semantics
and structure of the environment.

- Its organization should thus be consistent with some
prior knowledge about the basic properties of the exter-
nal causes

Previously proposed prior structure:

- Independence, sparseness (Olshausen & Field, 1996;
Bell & Sejnowski, 1997; Hyvarinen & Hoyer, 2000)

- Temporal stability, predictability (Rao & Ballard, 1999;
Hurri & Hyvirinen, 2003; Kording et al., 2004; Berkes &
Wiskott, 2005)

- Spatio-temporal “bubbles” (Hyvarinen et al., 2003)

- Bilinear sparse model with global shift variables
(Grimes & Rao, 2005)

We propose a model based on:
- Discreteness and persistence in time of objects
- Duality of identity (absence/presence of an object or
feature) and attributes (position, orientation, view-
point, ...). These two aspects have different semantics
and should be modeled accordingly. Both are necessary
to build invariant representations and to bind attributes
that refer to a single object together.
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- Conceptually similar to the what/where segregation
of the visual stream
- This representation might also be related to some
psychophysical effects, like for example temporal ver-
sions of the tilt illusion (see proof-of-concept in the
bottom right corner)

Simple and complex cells as style and content variables

in a bilinear model based on temporal stability
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Here we define &, to be linear functions,and f to be the

sum of its arguments, which leads to the bilinear mapping:

By (s)) = W, s

Y=Y Wisto+e
(Tenenbaum & Freeman, 2000,
Grimes &Rao,2005,Dayan, 2006)

Contents are assumed to be independent but individually

persistent, with styles that vary smoothly over time.

We formulate this model in a probabilistic framework,

which allows us:
- to keep the number of assumptions to a minimum

- to represent uncertainty about the inferred status of the

environment

- to learn the size of the model, i.e. number of contents

and dimensionality of the content manifold

Simulation

Input data: subset of the CatCam videos (Betsch et al.,
2004) - several minutes of recordings taken from a camera
mounted on the head of a freely-behaving cat. Observa-
tions consist of the pixel intensities in fixed windows of
size 20x20 pixels.
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Content and style variables can be interpreted as complex and simple cells in V1. The model sug-
gests that these form two parallel cell populations (as opposed to the classical hierarchical view) and
have two distinct functional roles.

In the plots below, we identify the mean of the style variables with the firing rate of simple cells.
Simulation data is reported for style variables in the same subspace, while the physiological data
from DeAngelis et al. (1999) is for simple cells on the same electrode.
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Model details

Instead of learning the Maximum Likelihood solution for the parameters, we adopt a
Bayesian analysis and integrate (approximately) over a distribution of model param-
eters. This can be combined with an Automatic Relevance Determination prior over
the weights in order to learn the size of the model, i.e. the number of contents and the
dimensionality of the style manifolds (Beal, 2003).

Contents are modeled as independent, binary Markov chains:

Py =11 (Pm DT Pleeslen s .))

=1

Content model

Plegi=alep—yi =b) =Ty a,be{0,1}

Styles are modeled as Linear Dynamical System, with mean and variance parameters
coupled such that the prior variance s 1:

Style model
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With dynamical parameters
A =diag(A\.... A, with Ay > ...
=, = diag(1 - A3,...,1-23)

> A, >0
(Turmer & Sahani, 2007)

The prior on the generative weights is Gaussian with mean zero:

PW) =[] P(Weur) = [TM(0.diag () ")
ab ab
After an initial phase, we start learning the precision parameters. For style dimensions
that are redundant or not useful, the precision diverges to infinity, forcing the corre-
sponding style basis vector to 0. This then provides an automatic determination of the
dimensionality of each content manifold.

We choose conjugate priors for the rest of the parameters, set to be rather noninforma-
tive for the input noise and more informative for the dynamic parameters, favouring
persistent contents and slowly-varying styles.

Learning is performed using Variational Bayesian Expectation Maximization (VBEM)
(Beal, 2003): Inference is performed keeping the whole distribution over parameters
and latent variables (as opposed for example to zero-temperature EM). The posterior
joint distribution is made tractable by factorizing it into tractable factors, the key VBEM
factorization being the one between model parameters and latent variables:
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We introduced three additional factorizations: between the distribution of weights be-
longing to different contents, between weights and input noise, and between different
contents at different times. All other factorizations arise naturally.




