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Abstract

The proposal that cortical activity in the visual cortex is optimized for sparse neu-
ral activity is one of the most established ideas in computational neuroscience.
However, direct experimental evidence for optimal sparse coding remains incon-
clusive, mostly due to the lack of reference values on which to judge the measured
sparseness. Here we analyze neural responses to natural movies in the primary
visual cortex of ferrets at different stages of development and of rats while awake
and under different levels of anesthesia. In contrast with prediction from a sparse
coding model, our data shows that population and lifetime sparseness decrease
with visual experience, and increase from the awake to anesthetized state. These
results suggest that the representation in the primary visual cortex is not actively
optimized to maximize sparseness.

1 Introduction

It is widely believed that one of the main principles underlying functional organization of the early
visual system is the reduction of the redundancy of relayed input from the retina. Such a transforma-
tion would form an optimally efficient code, in the sense that the amount of information transmitted
to higher visual areas would be maximal. Sparse coding refers to a possible implementation of this
general principle, whereby each stimulus is encoded by a small subset of neurons. This would allow
the visual system to transmit information efficiently and with a small number of spikes, improving
the signal-to-noise ratio, reducing the energy cost of encoding, improving the detection of “suspi-
cious coincidences”, and increasing storage capacity in associative memories [1, 2]. Computational
models that optimize the sparseness of the responses of hidden units to natural images have been
shown to reproduce the basic features of the receptive fields (RFs) of simple cells in V1 [3, 4, 5].
Moreover, manipulation of the statistics of the environment of developing animals leads to changes
in the RF structure that can be predicted by sparse coding models [6].

Unfortunately, attempts to verify this principle experimentally have so far remained inconclusive.
Electrophysiological studies performed in primary visual cortex agree in reporting high sparseness
values for neural activity [7, 8, 9, 10, 11, 12]. However, it is contested whether the high degree of
sparseness is due to a neural representation which is optimally sparse, or is an epiphenomenon due
to neural selectivity [10, 12]. This controversy is mostly due to a lack of reference measurement
with which to judge the sparseness of the neural representation in relative, rather than absolute
terms. Another problem is that most of these studies have been performed on anesthetized animals
[7, 9, 10, 11, 12], even though the effect of anesthesia might bias sparseness measurements (cf.
Sec. 6).

In this paper, we report results from electrophysiological recordings from primary visual cortex (V1)
of ferrets at various stages of development, from eye opening to adulthood, and of rats at different
levels of anesthesia, from awake to deeply anesthetized, with the goal of testing the optimality of
the neural code by studying changes in sparseness under different conditions. We compare this data
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with theoretical predictions: 1) sparseness should increase with visual experience, and thus with
age, as the visual system adapts to the statistics of the visual environment; 2) sparseness should be
maximal in the “working regime” of the animal, i.e. for alert animals, and decrease with deeper
levels of anesthesia. In both cases, the neural data shows a trend opposite to the one expected in a
sparse coding system, suggesting that the visual system is not actively optimizing the sparseness of
its representation.

The paper is organized as follows: We first introduce and discuss the lifetime and population sparse-
ness measures we will be using throughout the paper. Next, we present the classical, linear sparse
coding model of natural images, and derive an equivalent, stochastic neural network, whose output
firing rates correspond to Monte Carlo samples from the posterior distribution of visual elements
given an image. In the rest of the paper, we make use of this neural architecture in order to predict
changes in sparseness over development and under anesthesia, and compare these predictions with
electrophysiological recordings.

2 Lifetime and population sparseness

The diverse benefits of sparseness mentioned in the introduction rely on different aspects of the
neural code, which are captured to a different extent by two sparseness measures, referred to as
lifetime and population sparseness. Lifetime sparseness measures the distribution of the response
of an individual cell to a set of stimuli, and is thus related to the cell’s selectivity. This quantity
characterizes the energy costs of coding with a set of neurons. On the other hand, the assessment
of coding efficiency, as used by Treves and Rolls [13], is based upon the assumption that different
stimuli activate small, distinct subsets of cells. These requirements of efficient coding are based upon
the instantaneous population activity to stimuli and need to take into consideration the population
sparseness of neural response. Average lifetime and population sparseness are identical if the units
are statistically independent, in which case the distribution is called ergodic [10, 14]. In practice,
neural dependencies (Fig. 3C) and residual dependencies in models [15] cause the two measures to
be different.

Here we will use three measures of sparseness, two quantifying population sparseness, and one
lifetime sparseness. To make a comparison with previous studies easier, we computed population
and lifetime sparseness using a common measure introduced by Treves and Rolls [13] and perfected
by Vinje and Gallant [8]:

TR =

1−

(∑N
i=1 |ri|/N

)2

∑N
i=1 r2

i /N

/
(1− 1/N) , (1)

where ri represents firing rates, and i indexes time in the case of lifetime sparseness, and neurons
for population sparseness. TR is defined between zero (less sparse) and one (more sparse), and
depends on the shape of the distribution. For monotonic, non-negative distributions, such as that of
firing rates, an exponential decay corresponds to TR = 0.5, and values smaller and larger than 0.5
indicate distributions with lighter and heavier tails, respectively [14]. For population sparseness, we
rescale the firing rate distribution by their standard deviation in time for the modelling results, and by√∑T

t=1 r2
t /T for experimental data, as firing rate is non-negative. Moreover, in neural recordings

we discard bins with no neural activity, as population TR is undefined in this case. TR does not
depend on multiplicative changes firing rate, since it is invariant to rescaling the rates by a constant
factor. However, it is not invariant to additive firing rate changes. This seems to be adequate for
our purposes, as the arguments for sparseness involve metabolic costs and coding arguments like
redundancy reduction that are sensitive to overall firing rates. Previous studies have shown that
alternative measures of population and lifetime sparseness are highly correlated, therefore our choice
does not affect the final results [15, 10].

We also report a second measure of population sparseness known as activity sparseness (AS), which
is a direct translation of the definition of sparse codes as having a small number of neurons active at
any time [15]:

AS = 1− nt/N , (2)
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Figure 1: Generative weights of the sparse coding model at the beginning (A) and end (B) of learning.

where nt is defined as the number of neurons with activity larger than a given threshold at time t,
and N is the number of units. AS = 1 means that no neuron was active above the threshold, while
AS = 0 means that all of all neurons were active. The threshold is set to be one standard deviation
for the modeling results, or equivalently the upper 68th percentile of the distribution for neural
firing rates. AS gives a very intuitive account of population sparseness, and is invariant to both
multiplicative and additive changes in firing rate. However, since it discards most of the information
about the shape of the distribution, it is a less sensitive measure than TR.

3 Sparse coding model

The sparseness assumption that natural scenes can be described by a small number of elements
is generally translated in a model with sparsely distributed hidden units xk, representing visual
elements, that combine linearly to form an image y [3]:

p(xk) = psparse(xk) ∝ exp(f(xk)) , k = 1, . . . ,K (3)

p(y|x) = Normal(y; Gx, σ2
y) , (4)

where K is the number of hidden units, G is the mixing matrix (also called the generative weights)
and σ2

y is the variance of the input noise. Here we set the sparse prior distribution to a Student-t
distribution with α degrees of freedom,

p(xk) =
1
Z

(
1 +

1
α

(xk

λ

)2
)−α+1

2

, (5)

with λ chosen such that the distribution has unit variance. This is a common prior for sparse cod-
ing models [3], and its analytical form allows the development of efficient inference and learning
algorithms [16, 17].

The goal of learning is to adapt the model’s parameters in order to best explain the observed data,
i.e., to maximize the marginal likelihood∑

t

log p(yt|G) =
∑

t

∫
log p(yt|x,G)p(x)dx (6)

with respect to G. We learn the weights using a Variational Expectation Maximization (VEM)
algorithm, as described by Berkes et al. [17], with the difference that the generative weights are
not treated as random variables, but as parameters with norm fixed to 1, in order to avoid potential
confounds in successive analysis.

The model was applied to 9 × 9 pixel natural image patches, randomly chosen from 36 natural
images from the van Hateren database, preprocessed as described in [5]. The dimensionality of the
patches was reduced to 36 and the variances normalized by Principal Component Analysis. The
model parameters were chosen to be K = 48 and α = 2.5, a very sparse, slightly overcomplete
representation. These parameters are very close to the ones that were found to be optimal for natural
images [17]. The input noise was fixed to σ2

y = 0.08. The generative weights were initialized at
random, with norm 1. We performed 1500 iterations of the VEM algorithm, using a new batch of
3600 patches at each iteration. Fig. 1 shows the generative weights at the start and at the end of
learning. As expected from previous studies [3, 5], after learning the basis vectors are shaped like
Gabor wavelets and resemble simple cell RFs.
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Figure 2: Neural implementation of Gibbs sampling in a sparse coding model. A) Neural network architecture.
B) Mode of the activation probability of a neuron as a function of the total (feed-forward and recurrent) input,
for a Student-t prior with α = 2.05 and unit variance.

4 Sampling, sparse coding neural network

In order to gain some intuition about the neural operations that may underlie inference in this model,
we derive an equivalent neural network architecture. It has been suggested that neural activity is
best interpreted as samples from the posterior probability of an internal, probabilistic model of the
sensory input. This assumption is consistent with many experimental observations, including high
trial-by-trial variability and spontaneous activity in awake animals [18, 19, 20]. Moreover, sampling
can be performed in parallel and asynchronously, making it suitable for a neural architecture. As-
suming that neural activity corresponds to Gibbs sampling from the posterior probability over visual
elements in the sparse coding model, we obtain the following expression for the distribution of the
firing rate of a neuron, given a visual stimulus and the current state of the other neurons representing
the image [18]:

p(xk|xi 6=k,y) ∝ p(y|x)p(xk) (7)

∝ exp
(
− 1

2σ2
y

(yT y − 2yT Gx − xT Rx) + f(xk)
)

, (8)

where R = −GT G. Expanding the exponent, eliminating the terms that do not depend on xk, and
noting that Rkk = −1, since the generative weights have unit norm, we get

p(xk|xi 6=k,y) ∝ exp

 1
σ2

y

(
∑

i

Gikyi)xk +
1
σ2

y

(
∑
j 6=k

Rjkxj)xk −
1

2σ2
y

x2
k + f(xk)

 . (9)

Sampling in a sparse coding model can thus be achieved by a simple neural network, where the k-th
neuron integrates visual information through feed–forward connections from input yi with weights
Gik/σ2

y , and information from other neurons via recurrent connections Rjk/σ2
y (Fig. 2A). Neural

activity is then generated stochastically according to Eq. 9: The exponential activation function gives
higher probability to higher rates with increasing input to the neuron, while the terms depending on
x2

k and f(xk) penalize large firing rates. Fig. 2B shows the mode of the activation probability (Eq. 9)
as a function of the total input to a neuron.

5 Active sparsification over learning

A simple, intuitive prediction for a system that optimizes for sparseness is that the sparseness of its
representation should increase over learning. Since a sparse coding system, including our model,
might not directly maximize our measures of sparseness, TR and AS, we verify this intuition by
analyzing the model’s representation of images at various stages of learning. We selected at random
a new set of 1800 patches to be used as test stimuli. For every patch, we collected 50 Monte Carlo
samples, using Gibbs sampling (Eq. 9) combined with an annealing scheme that starts by drawing
samples from the model’s prior distribution and continues to sample as the prior is deformed into
the posterior [21]. This procedure ensures that the final samples come from the whole posterior dis-
tribution, which is highly multimodal in overcomplete models, and therefore that our analysis is not
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Figure 3: Development of sparseness, (A) over learning for the sparse coding model of natural images and (B)
over age for neural responses in ferrets. (A) The lines indicate the average sparseness over units and samples.
Error bars are one standard deviation over samples. Since the three measures have very different values, we
report the change in sparseness in percent of the first iteration. Colored text: absolute values of sparseness at
the end of learning. (B) The lines indicate the average sparseness for different animals. Error bars represent
standard error of the mean (SEM). (C) KL divergence between the distribution of neural responses and the
factorized distribution of neural responses. Error bars are SEM.

biased by the posterior distribution becoming more (or less) complex over learning. Fig. 3A shows
the evolution of sparseness with learning. As anticipated, both population and lifetime sparseness
increase monotonically.

Having confirmed our intuition with the sparse coding model, we turn to data from electrophysio-
logical recordings. We analyzed multi-unit recordings from arrays of 16 electrodes implanted in the
primary visual cortex of 15 ferrets at various stages of development, from eye opening at postnatal
day 29 or 30 (P29-30) to adulthood at P151 (see Suppl Mat for experimental details). Over this
maturation period, the visual system of ferrets adapts to the statistics of the environment [22, 23].
For each animal, neural activity was recorded and collected in 10 ms bins for 15 sessions of 100
seconds each (for a total of 25 minutes), during which the animal was shown scenes from a movie.
We find that all three measures of sparseness decrease significantly with age1. Thus, during a period
when the cortex actively adapts to the visual environment, the representation in primary visual cor-
tex becomes less sparse, suggesting that the optimization of sparseness is not a primary objective for
learning in the visual system. The decrease in population sparseness seems to be due to an increase
in the dependencies between neurons: Fig. 3C shows the Kullback-Leibler divergence between the
joint distribution P of neural activity in 2 ms bins and the same distribution, factorized to eliminate
neural dependencies, i.e., P̃ (r1, . . . rN ) :=

∏N
i=1 P (ri). The KL divergence increases with age

(Spearman’s ρ = 0.73, P < 0.01), indicating an increase in neural dependencies.

6 Active sparsification and anesthesia

The sparse coding neural network architecture of Fig. 2 makes explicit that an optimal sparse coding
representation requires a process of active sparsification: In general, because of input noise and the
overcompleteness of the representation, there are multiple possible combinations of visual elements
that could account for a given image. To select among these combinations the most sparse solution,
a competition between possible alternative interpretations must occur.

Consider for example a simple system with one input variable and two hidden units, such that
y = x1 + 1.3 · x2 + ε, with Gaussian noise ε. Given an observed value, y, there are infinitely many
solutions to this equality, as shown by the dotted line in Fig. 4B for y = 2. These stimulus–induced
correlations in the posterior are known as explaining away. Among all the solutions, the ones com-
patible with the sparse prior over x1 and x2 are given higher probability, giving raise to a bimodal

1Lifetime sparseness, TR: effect of age is significant, Spearman’s ρ = −0.65, P < 0.01; differences in
mean between the four age groups in Fig. 3 are significant, ANOVA, P = 0.02, multiple comparison tests with
Tukey-Kramer correction shows the mean of group P29-30 is different from that of groups P83-92 and P129-
151 with P < 0.05; Population sparseness, TR: Spearman’s ρ = −0.75, P < 0.01; ANOVA P < 0.01,
multiple comparison shows the mean of group P29-30 is different from that of group P129-151 with P < 0.05;
Activity sparseness, AS: Spearman’s ρ = −0.79, P < 0.01; ANOVA P < 0.01, multiple comparison shows
the mean of group P29-30 is different from that of groups P83-92 and P129-151 with P < 0.05.
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Figure 4: Active sparsification. Contour lines correspond to the 5, 25, 50, 75, 90, and 95 percentile of the
distributions. A) Prior probability. B) Posterior probability given observed value y = 2. The dotted line
indicates all solutions to 2 = x1+1.3·x2. C) Posterior probability with weakened recurrent weights (α = 0.5).

Figure 5: Active sparsification and anesthesia. A) Percent change in sparseness as the recurrent connections are
weakened for various values of α. Error bars are one standard deviation over samples. Colored text: absolute
values of sparseness at the end of learning. B) Average sparseness measures for V1 responses at various levels
of anesthesia. Error bars are SEM.

distribution centered around the two sparse solutions x1 = 0, x2 = 1.54, and x1 = 2, x2 = 0.
From Eq. 9, it is clear that the recurrent connections are necessary in order to keep the activity of the
neurons on the solution line, while the stochastic activation function makes sparse neural responses
more likely. This active sparsification process is stronger for overcomplete representations, for when
the generative weights are non-orthogonal (in which cases |rij | � 0), and for when the input noise
is large, which makes the contribution from the prior more important.

In a system that optimizes sparseness, disrupting the active sparsification process will lead to lower
lifetime and population sparseness. For example, if we reduce the strength of the recurrent connec-
tions in the neural network architecture (Eq. 9) by a factor α,

p(xk|xi 6=k,y) ∝ exp

 1
σ2

y

(
∑

i

Gikyi)xk +
1
σ2

y

α(
∑
j 6=k

Rjkxj)xk −
1

2σ2
y

x2
k + f(xk)

 , (10)

the neurons become more decoupled, and try to separately account for the input, as illustrated in
Fig. 4C. The decoupling will result in a reduction of population sparseness, as multiple neurons
become active to explain the same input. Also, lifetime sparseness will decrease, as the lack of
competition between units means that individual units will be active more often.

Fig. 5 shows the effect of reducing the strength of recurrent connections in the model of natural im-
ages. We analyzed the parameters of the sparse coding model at the end of learning, and substituted
the Gibbs sampling posterior distribution of Eq. 9 with the one in Eq. 10 for various values of α. As
predicted, decreasing α leads to a decrease in all sparseness measures.

We argue that a similar disruption of the active sparsification process can be obtained in electrophys-
iological experiments by comparing neural responses at different levels of isoflurane anesthesia. In
general, the evoked, feed-forward responses of V1 neurons under anesthesia are thought to remain
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Figure 6: Neuronal response to a 3.75 Hz full-field stimulation under different levels of anesthesia. Error bars
are SEM. A) Signal and noise amplitudes. B) Signal-to-noise ratio.

largely intact: Despite a decrease in average firing rate, the selectivity of neurons to orientation,
frequency, and direction of motion has been shown to be very similar in awake and anesthetized
animals [24, 25, 26]. On the other hand, anesthesia disrupts contextual effects like figure-ground
modulation [26] and pattern motion [27], which are known to be mediated by top-down and recur-
rent connections. Other studies have shown that, at low concentrations, isoflurane anesthesia leaves
the visual input to the cortex mostly intact, while the intracortical recurrent and top-down signals
are disrupted [28, 29]. Thus, if the representation in the visual cortex is optimally sparse, disrupting
the active sparsification by anesthesia should decrease sparseness.

We analyzed multi-unit neural activity from bundles of 16 electrodes implanted in primary visual
cortex of 3 adult Long-Evans rats (5-11 units per recording session, for a total of 39 units). Record-
ings were made in the awake state and under four levels on anesthesia, from very light to deep (cor-
responding to concentrations of isoflurane between 0.6 and 2.0%) (see Suppl Mat for experimental
details). In order to confirm that the effect of the anesthetic does not prevent visual information to
reach the cortex, we presented the animals with a full-field periodic stimulus (flashing) at 3.75 Hz
for 2 min in the awake state, and 3 min under anesthesia. The Fourier spectrum of the spikes trains
on individual channels shows sharp peaks at the stimulation frequency in all states. We measured the
response to the signal by the average amplitude of the Fourier spectrum between 3.7 and 3.8 Hz, and
defined the amplitude of the noise, due to spontaneous activity and neural variability, as the average
amplitude between 1 and 3.65 Hz (the amplitudes in this band are found to be noisy but uniform).
The amplitude of the evoked signal decreases with increasing isoflurane concentration, due to a de-
crease in overall firing rate; however, the background noise is also suppressed with anesthesia, so
that overall the signal-to-noise ratio does not decrease significantly with anesthesia (Fig. 6, ANOVA,
P=0.46).

We recorded neural responses while the rats were shown a two minute movie recorded from a cam-
era mounted on the head of a person walking in the woods. Neural activity was collected in 25 ms
bins. All three sparseness measures increase significantly with increasing concentration of isoflu-
rane2 (Fig. 5B). Contrary to what is expected in a sparse-coding system, the data suggests that the
contribution of lateral and top-down connections in the awake state leads to a less sparse code.

7 Discussion

We examined multi-electrode recordings from primary visual cortex of ferrets over development,
and of rats at different levels of anesthesia. We found that, contrary to predictions based on the-
oretical considerations regarding optimal sparse coding systems, sparseness decreases with visual
experience, and increases with increasing concentration of anesthetic. These data suggest that the

2Lifetime sparseness, TR: ANOVA with different anesthesia groups, P < 0.01; multiple comparison tests
with Tukey-Kramer correction shows the mean of awake group is different from the mean of all other groups
with P < 0.05; Population sparseness, TR: ANOVA, P < 0.01; multiple comparison shows the mean of
the awake group is different from that of the light, medium, and deep anesthesia groups, P < 0.05; Activity
sparseness, AS: ANOVA P < 0.01, multiple comparison shows the mean of the awake group is different from
that of the light, medium, and deep anesthesia groups, P < 0.05.
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high sparseness levels that have been reported in previous accounts of sparseness in the visual cortex
[7, 8, 9, 10, 11, 12], and which are otherwise consistent with our measurements (Fig. 3B, 5), are
most likely a side effect of the high selectivity of neurons, or an overestimation due to the effect of
anesthesia (Fig. 5; with the exception of [8], where sparseness was measured on awake animals),
but do not indicate an active optimization of sparse responses (cf. [10]).

Our measurements of sparseness from neural data are based on multi-unit recording. By collecting
spikes from multiple cells, we are in fact reporting a lower bound of the true sparseness values.
While a precise measurement of the absolute value of these quantities would require single-unit
measurement, our conclusions are based on relative comparisons of sparseness under different con-
ditions, and are thus not affected.

Our theoretical predictions were verified with a common sparse coding model [3]. The model as-
sumes linear summation in the generative process, and a particular sparse prior over the hidden unit.
Despite these specific choices, we expect the model results to be general to the entire class of sparse
coding models. In particular, the choice of comparing neural responses with Monte Carlo samples
from the model’s posterior distribution was taken in agreement with experimental results that report
high neural variability. Alternatively, one could assume a deterministic neural architecture, with
a network dynamic that would drive the activity of the units to values that maximize the image
probability [3, 30, 31]. In this scenario, neural activity would converge to one of the modes of the
distributions in Fig. 4, leading us to the same conclusions regarding the evolution of sparseness.

Although our analysis found no evidence for active sparsification in the primary visual cortex, ideas
derived from and closely related to the sparse coding principle are likely to remain important for our
understanding of visual processing. Efficient coding remains a most plausible functional account of
coding in more peripheral parts of the sensory pathway, and particularly in the retina, from where
raw visual input has to be sent through the bottleneck formed by the optic nerve without significant
loss of information [32, 33]. Moreover, computational models of natural images are being extended
from being strictly related to energy constraints and information transmission, to the more general
view of density estimation in probabilistic, generative models [34, 35]. This view is compatible with
our finding that the representation in the visual cortex becomes more dependent with age, and is less
sparse in the awake condition than under anesthesia: We speculate that such dependencies reflect
inference in a hierarchical generative model, where signals from lateral, recurrent connections in V1
and from feedback projections from higher areas are integrated with incoming evidence, in order to
solve ambiguities at the level of basic image features using information from a global interpretation
of the image [26, 19, 27, 20].
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