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No evidence for active sparsification in the visual cortex

Sparse coding

It is widely believed that one of the main principles underlying functional organization of

the early visual system is the reduction of the redundancy of relayed input from the retina.

Sparse coding refers to a possible implementation of this general principle, whereby each

stimulus is encoded by a small subset of neurons.

Advantages of sparse representations

Pietro Berkes, Benjamin L. White, József Fiser

Fiser Lab, Volen Center for Complex Systems, Brandeis University, berkes@brandeis.edu

Low metabolic cost Lifetime sparseness

Improved signal to noise ratio Lifetime/population sparseness

Reduce dependencies Population sparseness

Easier detection of co-activation patterns Population sparseness

Improved storage capacity in associative 
memories

Population sparseness

Sparseness and simple cell RFs

Experimental evidence

Sparse coding models reproduce 

main characteristics of simple cells 

RFs (Olshausen & Field, 1996, 

1997 ; Bell & Sejnowski, 1997; van 

Hateren and van der Schaaf, 1998)

Reproduce changes due to 

manipulation of visual environment 

(Hsu & Dayan, 2007)

Several experimental studies report high sparseness in V1:

Baddeley et al., 1997

Vinje and Gallant, 2000, 2002

Lehky et al., 2005

Weliky et al., 2003

Tolhurst et al., 2009

Baddeley et al., 1997

Yen et al, 2007

1. Is high sparseness due to optimal sparse representation or just neural 

selectivity? (Lehky et al., 2005) Need relative measurement of sparseness.

2. Most of these studies are on anesthetized animals

The sparse coding model

Sampling, sparse coding neural network

Sparseness over learning

Sparseness measures

Test set of 1800 

natural image 

patches. 50 

samples collected 

using Gibbs 

sampling and an 

annealing 

scheme.

Lifetime and population sparseness increase

monotonically with learning

Lifetime and population sparseness decrease

with visual experience

15 awake ferrets at various stages

of development, from eye opening

(P29) to adulthood

Multi-unit recordings from linear

array of 16 electrodes, implanted in

V1. Neural activity was collected in

10ms bins.

Stimuli were movie scenes, 15

sessions of 100 seconds each (25

min total).

Decrease in sparseness seems

to be due to increase in

dependencies between neurons:

compare joint distribution of

neural activity in 2ms bins with

factorized distribution

Active sparsification and anesthesia

Lifetime and population sparseness decrease

when lateral connections are weakened

Lifetime and population sparseness increase

with deeper anesthesia

Optimal sparseness 

requires a process of 

active sparsification 

mediated by recurrent 

connections

3 adult Long-Evans rats, 5-11 units

per session (total 39 units)

Multi-unit recordings from bundle of

16 electrodes, implanted in V1.

Recorded in awake animals and

under different levels of isoflurane

anesthesia (0.6-2.0%). Neural activity

collected in 25ms bins.

Stimulus was a 2 min movie from a

camera mounted on a person walking

in a forest.

Increase in sparseness is unlikely to be due to loss of feed-forward information:

• Feed-forward RF properties of neuron in V1 do not change significantly with
anesthesia (Schiller et al., 1976; Snodderly & Gur, 1995; Lamme et al., 1998)

• Light levels of isoflurane affect mainly cortico-cortical connections (Detsch et al.,
1999; Hentschke et al., 2005)

• Signal-to-noise ratio of responses to periodic flashing stimulus does not change
significantly with anesthesia:

• Lifetime sparseness: sum over time

• Population sparseness: sum over neurons

• Invariant to additive changes in firing rate

• Neural responses normalized by standard 
deviation for population sparseness

• Population sparseness: nt is the number of neurons above 

threshold (1 standard deviation)

• Invariant to additive and multiplicative changes  
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Prior: iid, sparse distribution (Student-t)

Sparse coding model was applied to 9x9 pixel natural image patches, reduced to 36 dimensions by

PCA. Generative weights learned by VBEM for 1500 iterations, 3600 new patches at each iteration.

Model parameters: K=48 (slightly overcomplete), alpha=2.5 (very sparse).

Assuming that neural activity represents Gibbs samples from posterior distribution:

This expression can be translated in a simple, one-layer neural network with feed-forward and recurrent

connections:

Neural activation function

Sparse coding requires active sparsification process

with

Simple example with one input component modeled by two sparse variables: 

Prior Posterior for y=2 Posterior for y=2
with recurrent connections 

reduced by half

At eye opening Adult animal

Conclusions

Neural data shows trends of lifetime and

population sparseness over development and

under anesthesia that are opposite to those

predicted by the sparse coding hypothesis,

suggesting that the sparse responses of

visual neurons are not due to an active

sparsification process.

However, the results are consistent with a

generalization of efficient coding as learning

in a hierarchical, probabilistic model of visual

input.

Population sparseness measures are normalized to discard the effect of global firing 

rate changes. Alternative sparseness measures are highly correlated.

(Olshausen & Field, 1996)

Fraction of strength of recurrent connections

  [-0.65, -0.79]

P<0.01

 = 0.73

P<0.01

ANOVA, P<0.01

ANOVA, P=0.46


