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Abstract

The coding of information by neural populations dependscally on the statisti-

cal dependencies between neuronal responses. Howeverigim® simple model
that can simultaneously account for (1) marginal distidng over single-neuron
spike counts that are discrete and non-negative; and (&)ddtributions over the
responses of multiple neurons that are often strongly digren Here, we show
that both marginal and joint properties of neural resporaasbe captured using
copula models. Copulas are joint distributions that allawdom variables with
arbitrary marginals to be combined while incorporatingtaalby dependencies be-
tween them. Different copulas capture different kinds qietelencies, allowing
for a richer and more detailed description of dependentias traditional sum-

mary statistics, such as correlation coefficients. We arptovariety of copula
models for joint neural response distributions, and desivesfficient maximum

likelihood procedure for estimating them. We apply thesel@®to neuronal data
collected in macaque pre-motor cortex, and quantify therawgment in cod-

ing accuracy afforded by incorporating the dependencycttra between pairs
of neurons. We find that more than one third of neuron pairsvstdependency
concentrated in the lower or upper tails for their firing rdigtribution.

1 Introduction

An important problem in systems neuroscience is to devetybfle, statistically accurate models
of neural responses. The stochastic spiking activity oividdal neurons in cortex is often well
described by a Poisson distribution. Responses from nheitigurons also exhibit strong dependen-
cies (i.e., correlations) due to shared input noise anddbatetwork interactions. However, there is
no natural multivariate generalization of the Poissorritligtion. For this reason, much of the litera-
ture on population coding has tended either to ignore catiogls entirely, treating neural responses
as independent Poisson random variables [1, 2], or to ad@aussian model of joint responses
[3, 4], assuming a parametric form for dependencies butriggdkey features (e.g., discreteness,
non-negativity) of the marginal distribution. Recent wéwks focused on the construction of large
parametric models that capture inter-neuronal dependgensing generalized linear point-process
models [5, 6, 7, 8, 9] and binary second-order maximum-egtraodels [10, 11, 12]. Although
these approaches are quite powerful, they model spikestmily in very fine time bins, and thus
describe the dependencies in neural spike count distoisionly implicitly.

Modeling the joint distribution of neural activities is tledore an important open problem. Here
we show how to construct non-independent joint distrimgiover firing rates using copulas. In
particular, this approach can be used to combine arbitrasgimal firing rate distributions. The

development of the paper is as follows: in Section 2, we pl®a basic introduction to copulas;
in Section 3, we derive a maximum likelihood estimation idere for neural copula models, in
Sections 4 and 5, we apply these models to physiological catacted in macaque pre-motor
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Figure 1. Samples drawn from a joint distribution defined using the dependenatwstewof a bivariate Gaus-
sian distribution and changing the marginal distributions. Top row: Theyimardistributions (the leftmost
marginal is uniform, by definition of copula). Bottom row: The log-denéityction of a Gaussian copula, and
samples from the joint distribution defined as in Eq. 2.

cortex; finally, in Section 6 we review the insights providedneural copula models and discuss
several extensions and future directions.

2 Copulas

A copula C(uy,...,u,) : [0,1]™ — [0, 1] is a multivariate distribution function on the unit cube
with uniform marginals [13, 14]. The basic idea behind cagus quite simple, and is closely related
to that ofhistogram equalization: for a random variablg; with continuous cumulative distribution
function (cdf) F;, the random variable, := F;(y;) is uniformly distributed on the intervad, 1].
One can use this basic property to separate the marginatstfre dependency structure in a mul-
tivariate distribution: the full multivariate distribati is standardized by projecting each marginal
onto one axis of the unit hyper-cube, and leaving one wittsaxilution on the hyper-cube (the cop-
ula, by definition) that represent dependencies in the malgjiquantiles. This intuition has been
formalized in Sklar's Theorem [15]:

Theorem 1 (Sklar, 1959) Given uy,...,u, random variables with continuous distribution func-
tions Fy, ..., F, and joint distribution?’, there exist a unique copu@ such that for alk;:
Cluty ..., un) =F(F171(u1),...7Fn_1(un)) Q)
Conversely, given any distribution functiods, . . ., F,, and copulaC,
F(y177yn):C(F1(y1)77Fn(y’n)) (2)
is an-variate distribution function with marginal distributidunctionsF, . .., F,.

This result gives a way to derive a copula given the joint aadgimal distributions (using Eq. 1), and
also, more importantly here, to construct a joint distritmby specifying the marginal distributions
and the dependency structure separately (Eq. 2). For egaon® can keep the dependency structure
fixed and vary the marginals (Fig. 1), or vice versa given fixedginal distributions define new joint
distributions using parametrized copula families (Fig.Fr illustration, in this paper we are going
to consider only the bivariate case. All the methods, howeayeneralize straightforwardly to the
multivariate case.

Since copulas do not depend on the marginals, one can definie imay dependency measures that
are insensitive to non-linear transformations of the iitlial variables [14] and generalize correla-
tion coefficients, which are only appropriate for elliptistibutions. The copula representation has
also been used to estimate the conditional entropy of n&ateaicies by separating the contribution
of the individual latencies from that coming from their cgations [16].

Dependencies structures are specified by parametric cégouilies. One notable example is the
Gaussian copula, which generalizes the dependency structure of the mubiteaGaussian distribu-
tion to arbitrary marginal distribution (Fig. 1), and is ¢efd as

Clur, ug; B) = @5 (¢~ (u1), 0™ (ug)) | (3)

whereé(u) is the cdf of the univariate Gaussian with mean 0 and varidn@nd®sy; is the cdf
of a standard multivariate Gaussian with me&aand covariance matri¥. Other families derive
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Figure 2: Samples drawn from a joint distribution with fixed Gaussian marginals apdrdkency structure
defined by parametric copula families, as indicated by the labels. Top layvdensity function for three
copula families. Bottom row: Samples from the joint distribution (Eq. 2).

Gaussian  Cgi(u,up) = @z (¢ (1), 67" (u2))
Frank OF (1) = — jlog (1 + (120
Clayton O (uy, uz) = (u7? +uz® — 1)1, 9> 0

Clayton negative C2'*?(uy, us) = max { (uy? + uz? —1),0} "/’ ~1<0 <0

Gumbel C§"(u1,up) = exp (— (af +af)'/%), @; = —loguj, 0 >1

Table 1: Definition of families of copula distribution functions.

from the economics literature, and are typically one-patamfamilies that capture various possible
dependencies, for example dependencies only in one of ithefdhe distribution. Table 1 shows
the definition of the copula distributions used in this pafsere [14], for an overview of known
copulas and copula construction methods).

3 Maximum Likelihood estimation for discrete marginal distributions

In the case where the random variables have discrete distribfunctions, as in the case of neural
firing rates, only a weaker version of Theorem 1 is valid: ¢helivays exists a copula that satisfies
Eg. 2, but it is no longer guaranteed to be unique [17]. Widtdite data, the probability of a
particular outcome is determined by an integral over théoregf [0,1]™ corresponding to that
outcome; any two copulas that integrate to the same valued! anch regions produce the same
joint distribution.

We can derive a Maximum Likelihood (ML) estimation of the giayeters) by considering a gener-
ative model where uniform marginals are generated fromdipala density, and in turn use these to
generate the discrete variables deterministically usiegriverse (marginal) distribution functions,
as in Fig. 3. These marginals can be given by the empiricaltative distribution of firing rates (as
in this paper) or by any parametrized family of univariatetidbutions (such as Poisson).

The ML equation then becomes

argmanp(y[6) — argmax | p(y u)p(ul6)d (4)
F1(y1) Fr(yn)
= argmax / co(u, ..., u,)dua, (5)
0 Fi(y1—1) Fn(yn—1)

whereF; can depend on additional paramet&ys The last equation is the copula probability mass
inside the volume defined by the verticBSy,) andF;(y; — 1), and can be readily computed using
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Figure 3: Graphical representation of the copula model with discrete marginal§orbnmarginalsu are
drawn from the copula density functien (u1, ..., u,), parametrized by. The discrete marginals are then
generated deterministically using the inverse cdf of the marginals, whichamametrized by.
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Figure 4: Distribution of the maximum likelihood estimation of the parameters of fouukofamilies, for
various setting of their parameter (x-axis). On the y-axis, estimatesatered such that 0 corresponds to an
unbiased estimate. Error bars are one standard deviation of the estimate.

the copula distributio®y (u1, . . . , u, ). For example, in the bivariate case one obtains

argemaXp(yhyg\G) = al’g@l’T]aX[Cg(UbUQ) + Co(uy,uy ) — Co(uy ,u2) — Colur,ug )|,  (6)

whereu; = Fz(yz) andu; = Fz(yl — 1)

ML optimization can be performed using standard metho#s,dradient descent. In the bivariate
case, we find that optimization using the standard MATLABirof#ation routines is relatively ef-
ficient. Given neural data in the form of firing ratggs y> from a pair of neurons, we collect the
empirical cumulative histogram of responsé$(k) = P(y; < k). The data is then transformed
through the cdfs; = F;(y;), and the copula model is fit according to Eq. 6. If a parameistibu-
tion family is used for the marginals, the parameters of tiputad and those of the marginalscan
be estimated simultaneously, or alternativelgan be fitted first, followed by. In our experience,
the second method is much faster and the quality of the fipis@jly unchanged.

We checked for biases in ML estimation due to a limited amairdata and low firing rate by
generating data from the discrete copula model (Fig. 3)a faumber of copula families and Poisson
marginals with parameters; = 2, A, = 3. The estimate is based on 3500 observations generated
from the models (1000 for the Gaussian copula). The estimadirepeated 200 times (100 for the
Gaussian copula) in order to compute the mean and standéedide of the ML estimate. Figure 4
shows that the estimate is unbiased and accurate for a wide & parameters. Inaccuracy in the
estimation becomes larger as the copulas approach fuattiependency (i.eus = f(u;) for a
deterministic functionf), as it is the case for the Gaussian copula wheands to 1, and for the
Gumbel copula ag goes to infinity. This is an effect due to low firing rates. Givaur formulation of
the estimation problem as a generative model, one could ose sophisticated Bayesian methods
in place of the ML estimation, in order to infer a whole distrion over parameters given the data.
This would allow to put error bars on the estimated pararegtard would avoid overfitting at the
cost of computational time.

4 Results

To demonstrate the ability of copula models to fit joint firiage distribution, we model neural data
recorded using a multi-electrode array implanted in therpotor cortex (PMd) area of a macaque
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Figure 5: Empirical joint distribution and copula fit for two neuron pairs. The top givws two neurons

that have dependencies mainly in the upper tails of their marginal distrib(dteapair in the bottom row has
negative dependency. a,d) Histogram of the firing rate of the two neuf@olors correspond to the logarithm
of the normalized frequency. b,e) Empirical copula. The color intersity been cut off at 2.0 to improve
visibility. c,f) Density of the copula fit.

monkey [18, 19]. The array consistedlifl x 10 electrodes separated b0 m. Firing times were
recorded while the monkey executed a center-out reachslg t&ee [19] for a description of the
task and general experimental setup. We fit the copula maet)uhe marginal distribution of
neural activity over the entire recording session, inalgdiata recorded between trials (i.e., while
the monkey was freely behaving). Although one might alse tikk consider data collected during
a single task condition (i.e., the stimulus-conditionap@nse distribution), the marginal response
distribution is an important statistical object in its owght, and has been the focus of recent much
literature [10, 11]. For example, the joint activity acroesirons, averaged over stimuli, is the only
distribution the brain has access to, and must be sufficeereérning to construct representations
of the external world.

We collected spike responses in 100ms bins, and selectediddm, without repetition, a training
set of 4000 bins and a test set of 2000 bins. Out of a total ofnE@dons we select a subset of 33
neurons that fired a minimum of 2500 spikes over the whole siitaFor every pair of neurons in
this subset (528 pairs), we fit the parameters of severalladannilies to the joint firing rate.

Figure 5 shows two examples of the kind of the dependencesept in the data set and how they
are fit by different copula families. The neuron pair in thp tow shows dependency in the upper
tails of their distribution, as can be seen in the histogrdijoiat firing rates (colors represent the
logarithm of the frequency): The two neurons have the teoglemfire strongly together, but are rel-
atively independent at low firing rates. This is confirmed lyd@mpirical copula, which shows the
probability mass in the regions defined by the cdfs of the matglistribution. Since the marginal
cdfs are discrete, the data is projected on a discrete satinfspon the unit cube; the colors in
the empirical copula plots represent the probability magke region where the marginal cdfs are
constant. The axis in the empirical copula should be inetegl as the quantiles of the marginal
distributions — for example, 0.5 on the x-axis correspomndhé median of the distribution af; .
The higher probability mass in the upper right corner of the thus means that the two neurons
tend to be in the upper tails of the distributions simultarshg and thus to have higher firing rates
together. On the right, one can see that this dependenatisteus well captured by the Gumbel
copula fit. The second pair of neuron in the bottom row havetigdependency, in the sense that
when one of them has high firing rate the other tends to betsidthough this is not readily visible
in the joint histogram, the dependency becomes clear inrtfgreeal copula plot. This structure is
captured by the Frank copula fit.

The goodness-of-fit of the copula families is evaluated lmgsivalidation: We fit different models
on training data, and compute the log-likelihood of testdatder the fitted model. The models are
scored according to the difference between the log-likelthof a model that assumes independent
neurons and the log-likelihood of the copula model. This snea (appropriately renormalized) can
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Figure6: In the pairs where their fitimproves over the independence model, thepgers (left) and the score
(right) of the Gaussian and Frank models are highly correlated.

be interpreted as the number of bits per second that can bd sénen coding the firing rate by taking
into account the dependencies encoded by the copula faiftiig is because this quantity can be
expressed as an estimation of the difference in the Kulltasikler divergence of the independent
(pindep) and copula modepg) to the real distributionp™

<10gp0(y)>y~p* - <10gpindep(y)>y~l7* (7)
~ / p*(y)logpe(y)dy — / P*(y) 10g Pindep(y) (8)
= KL(p*||pindep) — KL(p*||po)- 9)

We took particular care in selecting a small set of copulalfasithat would be able to capture the
dependencies occurring in the data. Some of the familigsstbaonsidered at first capture similar
kind of dependencies, and their scores are highly corictlder example, the Frank and Gaussian
copulas are able to represent both positive and negativendepcies in the data, and simultaneously
in lower and upper tails, although the dependencies in ilgedee less strong for the Frank family
(compare the copula densities in Figs. 1 and 5f). Fig. 6)(&fows that both the parameter fits and
their performance are highly correlated. An advantage eftank copula is that it is much more
efficient to fit, since the Gaussian copula requires mulépluations of the bivariate Gaussian cdf,
which requires expensive numerical calculations. In &olditThe Gaussian copula was also found
to be more prone to overfitting on this data set (Fig. 6, righr these reasons, we decided to use
the Frank family only for the rest of the analysis.

With similar procedures we shortlisted a total 3 familiestttover the vast majority of dependencies
in our data set: Frank, Clayton, and Gumbel copulas. Exanpiléhe copula density of these
families can be found in Figs. 2, and 5. The Clayton and Gurotyllas describe dependencies in
the lower and upper tails of the distributions, respecyivée didn't find any example of neuron
pairs where the dependency would be in the upper tail of theildution for one and in the lower
tail for the other distribution, or more complicated depamcies.

Out of all 528 neuron pairs, 393 had a significant improvenfer0.05 on test data) over a model
with independent neurohsind for 102 pairs the improvement was larger than 1 bit/sepeDden-
cies in the data set seem thus to be widespread, despitecttibdtindividual neurons are recorded
from electrodes that are up to 4.4 mm apart. Fig. 7 shows #iedram of improvement in bits/sec.
The most common dependencies structures over all neuroharai given by the Gaussian-like de-
pendencies of the Frank copulatfs of the pairs). Interestingly, a large proportion of the roes
showed dependencies concentrated in the upper tails (Guoela,22%) or lower tails (Clayton
copula,16%) of the distributions (Fig. 7).

5 Discussion

The results presented here show that it is possible to represeuronal spike responses using a
model that preserves discrete, non-negative marginale widorporating various types of depen-

we computed the significance level by generating an artificial data sef imsiependent neurons with the
same empirical pdf as the monkey data. We analyzed the generatechdatanaputed the maximal improve-
ment over an independent model (due to the limited number of sampieslificial test data. The resulting
distribution is very narrowly distributed around zero. We took the 95thgrdile of the distribution (0.02
bits/sec) as the threshold for significance.



Improvement over independent model
100 T T

<-371

Independent 8%

80r

60

40¢

number of pairs

20r

bits/sec

Figure 7: For every pair of neurons, we select the copula family that shows thesaimprovement over a
model with independent neurons, in bits/sec. Left: histogram of the géitsilsec over the independent model.
Right: Pie chart of the copula families that best fit the neuron pairs.
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Figure 8: Hybrid LNP-copula model. The LNP part of the model removes stimiridseed correlations from
the neural data, so that the copula model can take into account resatwalrk-related dependencies.

dencies between neurons. Mathematically, it is straigiviod to generalize these methods to the
n-variate case (i.e., distributions over the responsesmdurons). However, many copula families
have only one or two parameters, regardless of the copulargiionality. If the dependency struc-
ture across a neural population is relatively homogenebes, these copulas may be useful in that
they can be estimated using far less data than requiredfa.@. full covariance matrix (which has
O(n?) parameters). On the other hand, if the dependencies withapalation vary markedly for
different pairs of neurons (as in the data set examined hsuej copulas will lack the flexibility
to capture the complicated dependencies within a full papr. In such cases, we can still apply
the Gaussian copula (and other copulas derived from elifiyi symmetric distributions), since it is
parametrized by the same covariance matrix asdgmensional Gaussian. However, the Gaussian
copula becomes prohibitively expensive to fit in high dimens, since evaluating the likelihood
requires an exponential number of evaluations of the mariite Gaussian cdf, which itself must be
computed numerically.

One challenge for future work will therefore be to design mparametric families of copulas whose
parameters grow with the number of neurons, but remainaiséetenough for maximum-likelihood

estimation. Recently, Kirshner [20] proposed a copulaeeaspresentation for multivariate distri-
butions using a model that averages over tree-structungdadlistributions. The basic idea is that
pairwise copulas can be easily combined to produce a traetgted representation of a multivari-
ate distribution, and that averaging over such trees gire=/an more flexible class of multivariate
distributions. We plan to examine this approach using dguoaulation data in future work.

Another future challenge is to combine explicit models @ stimulus-dependence underlying neu-
ral responses with models capable of capturing their jasponse dependencies. The data set
analyzed here concerned the distribution over spike resgsoduring all all stimulus conditions
(i.e., the marginal distribution over responses, as oppts¢he the conditional response distribu-
tion given a stimulus). Although this marginal responséritigtion is interesting in its own right,
for many applications one is interested in separating ioms that are induced by external stimuli
from internal correlations due to the network interactio@ne obvious approach is to consider a
hybrid model with a Linear-Nonlinear-Poisson model [21pteaing stimulus-induced correlation,
adjoined to a copula distribution that models the resideglethdencies between neurons (Fig. 8).
This is an important avenue for future exploration.
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