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Abstract

We present an analytical comparison between linear slow feature analysis and second-order
independent component analysis, and show that in the case of one time delay the two approaches
are equivalent. We also consider the case of several time delays and discuss two possible exten-
sions of slow feature analysis.

1 Introduction

In data analysis it is often desirable to transform the input signals into a new representation that
recovers as much information as possible about the underlying processes. In the classical example
of two people speaking simultaneously while being recorded with two microphones, for instance,
the observed signal is a mixture of their voices. A more useful representation here would be one
where each signal component contains only the information about a single speaker. On the other
hand, in the visual domain one might be interested in a representation that is invariant to typical
transformations, such as translation or zoom. A variety of linear and nonlinear methods have been
developed to extract the interesting features from an observed signal.

In this paper we focus on two methods that consider different properties of the observed signal,
namely Independent Component Analysis (ICA) (see Hyvärinen et al., 2001, for an overview) and
Slow Feature Analysis (SFA) (Wiskott and Sejnowski, 2002). ICA finds a representation of the
data such that signal components are mutually statistically independent, which can be used to
separate the two speakers in the example above. SFA on the other hand extracts slowly-varying
features, which can be used in the second example to learn visual invariances. At first glance these
two methods are very different and even seem to be conflicting, since two slowly-varying signals of
finite length are intuitively more likely to have statistical dependencies than quickly-varying ones.
However, we will see that ICA and SFA do have common properties, which we are going to point
out by comparing the two algorithms mathematically.
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To carry out the comparison we have to apply some restrictions. SFA is constrained to non-
white signals with a temporal structure (e.g., speech signals) and it is based on second-order
statistics. We therefore compare it to ICA algorithms that only use second-order information and
need a temporally structured signal as well (Molgedey and Schuster, 1994; Belouchrani et al., 1997;
Ziehe and Müller, 1998; Zibulevsky and Pearlmutter, 2000; Nuzillard and Nuzillard, 2003). SFA
is usually applied as a nonlinear method: It uses a nonlinear expansion to map the input signal
into a feature space and then solves a linear problem there. ICA on the other hand is typically a
linear method, since in the nonlinear case the problem is in general underdetermined (because the
solution is not unique) and there is thus no guarantee to recover the original sources (Hyvärinen and
Pajunen, 1999; Jutten and Karhunen, 2003). (There do however exist some nonlinear approaches
that make additional assumptions about the nonlinear mapping or the input data.) To make a
comparison between the two methods possible, we will restrict SFA to the linear case. Nevertheless,
all calculations in this paper are essentially the same for linear or nonlinear SFA.

2 Linear Mixing and Unmixing

Let x(t) = [x1(t), . . . , xN (t)]T be a linear mixture of a multidimensional source signal s(t) =
[s1(t), . . . , sN (t)]T :

x(t) = As(t) , (1)

where A is a square mixing matrix and different components si come from statistically independent
sources. In the following we will assume that s(t) and x(t) have zero mean, without loss of generality.
A common linear preprocessing step in many ICA algorithms as well as in linear SFA is the
whitening of the input signal x(t). Whitening results in a signal y(t) = Wx(t) with mutually
uncorrelated components, 〈yi(t)yj(t)〉 = 0 ∀ i 6= j, unit variance,

〈
yi(t)2

〉
= 1, and zero mean,

〈yi(t)〉 = 0, where 〈·〉 denotes averaging over time. It can be shown that after the whitening step
an orthogonal transformation Q on y is sufficient to yield independent components (Comon, 1994)
or slowly-varying features (Wiskott and Sejnowski, 2002). Therefore the output signal u(t) can be
obtained by combining the whitening matrix W and a rotation matrix Q

u(t) = Qy(t) = QWx(t) . (2)

In the following we will always assume whitened data y(t) and focus on finding Q. Since zero
mean and whitening are preserved under any orthogonal transformation, the components of u(t)
also satisfy the three conditions:

〈ui(t)〉 = 0 (zero mean), (3)〈
ui(t)2

〉
= 1 (unit variance), (4)

∀i 6= j : 〈ui(t)uj(t)〉 = 0 (decorrelation). (5)

These properties fulfill the constraints imposed by SFA (cf. Sec. 4) and are a good prerequisite for
ICA because they constrain the output signals ui(t) to be statistically independent in the first and
second order.

3 Second-Order Independent Component
Analysis

Given the linear mixture (1) ICA tries to retrieve the source signal components s(t) from the input
signal x(t). The mixing matrix A is unknown and the source signal components are assumed to be
mutually independent. The typical approach is to define an objective function that is a measure
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of independence of the estimated source signal components ui. The problem is then solved by
optimizing this function with respect to Q.

There exist different measures of independence. Most algorithms are based on the assumption
that two signals are independent if their joint distribution is equal to the product of their marginals
(e.g. Cardoso and Souloumiac, 1993; Hyvärinen, 1999; Lee et al., 1999). A corresponding measure
in this case is the Kullback-Leibler divergence. We will refer to this approach as higher-order ICA.

This definition, however, does not capture all aspects of independence: Consider a signal without
temporal auto-correlation (e.g., white noise) and a second signal that is equal to the first one
but shifted in time. Applying the measure of independence mentioned above, the two signals
appear to be independent although they are actually a time shifted copy of each other and thereby
intuitively strongly dependent. This dependence across time can be taken into account using a
different measure where two signals are considered statistically independent if all time-delayed
correlations are zero (second-order ICA) (Molgedey and Schuster, 1994; Belouchrani et al., 1997;
Ziehe and Müller, 1998). In order to successfully apply this measure the source signals need to have
a time structure (must be non-white), which is also a necessary condition for SFA. An alternative
formulation of this idea is to use a model of the sources that includes a dynamic in time and assume
that the time series are independent as a whole (Pearlmutter and Parra, 1996). In this paper we are
going to study algorithms based on this latter definition of independence, following the formulation
by Molgedey and Schuster (1994).

To derive an objective function for second-order ICA we first introduce time-delayed correlation
matrices of the estimated source signal u(t),

C(u)(τ) :=
〈
u(t)u(t + τ)T

〉
, (6)

where τ is the time delay between two signals. We denote the entries of C(u)(τ) as C
(u)
ij (τ). For a

signal u(t) with independent components, C(u)(τ) should be diagonal for all τ . We are therefore
looking for an objective function that, when optimized, jointly diagonalizes those matrices.

It is common in practice to use a symmetrized version of the correlation matrices1:

C(u)(τ) :=
1
2

[〈
u(t)u(t + τ)T

〉
+

〈
u(t + τ)u(t)T

〉]
. (7)

Computing the symmetrized matrices is equivalent to applying the algorithm to the original input
data and to the data reversed in time (because

〈
u(t + τ)u(t)T

〉
=

〈
u(t)u(t − τ)T

〉
). This reflects

the fact that, with respect to the unmixing problem, the time direction is not important. Moreover,
the symmetric form can always be diagonalized with a rotation matrix (while the non-symmetric
matrices can have complex eigenvalues and eigenvectors) and has better numerical properties. Note,
however, that in some pathological cases the cross-correlation terms can cancel out each other: For
example, if u(t) = [sin (t), cos (t)]T there clearly are cross-correlations but in the symmetrized ver-
sion the off-diagonal terms in (7) are zero for all τ . The two signals are thus considered independent
by the algorithm.

We will first focus on the case of a single time delay τ (Molgedey and Schuster, 1994). The
extension to more than one time-delayed correlation matrix is straightforward and will be described
in Section 5. Because of the whitening step (5) the correlation matrix with time delay zero is already
diagonal. With one time delay the ICA algorithm thus reduces to diagonalizing a single time-
delayed correlation matrix C(u)(τ). This can be achieved by using the method of Jacobi (Cardoso
and Souloumiac, 1996) to minimize the sum of the squared off-diagonal entries, a technique used in
several second-order ICA algorithms (Belouchrani et al., 1997; Ziehe and Müller, 1998) as well as

1In (Ziehe and Müller, 1998) the correlation matrices are not explicitly defined in the paper but
the Matlab implementation made available by the authors uses the symmetric form.
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in methods based on higher-order statistics (Cardoso and Souloumiac, 1993). Using this method
we can define a simple objective function subject to minimization

ΨICA :=
N∑

i,j=1

i6=j

(C(u)
ij (τ))2 (8)

=
∑
i6=j

(
qT

i C(y)(τ)qj

)2
(9)

where qi is the i-th row of Q. ΨICA is a function of the vectors qi, which are subject to learning,
and of the whitened signal y(t), which is given. This objective function is optimized by a sequence
of elementary rotations within the plane spanned by two axes. A possible optimization procedure
has been described by Cardoso and Souloumiac (1996); a more efficient optimization schedule has
been derived by Blaschke and Wiskott (2004a).

4 Linear Slow Feature Analysis

Given a whitened input signal y(t) = [y1(t), . . . , yN (t)]T , linear SFA finds a rotation matrix Q such
that the components ui of the output signal u(t) = Qy(t) vary as slowly as possible in time and
are ordered by decreasing slowness (the first one being the slowest possible, the second one the next
slowest uncorrelated to the first, etc.). As a measure of slowness we define (small values indicating
slowly-varying signals)

∆(ui) :=
〈
u̇i(t)2

〉
, (10)

which has to be minimized (Wiskott and Sejnowski, 2002). Due to the earlier whitening step, each
output signal ui(t) has zero mean and unit variance (3, 4). This ensures that the solution will not
be the trivial solution ui(t) = const. The decorrelation of the output signals (5) guarantees that
different components carry different information.

We will first show how to solve the optimization problem of SFA in a way similar to that
described by Wiskott and Sejnowski (2002) and then establish a link between SFA and second-
order ICA. For discrete time series the first derivative of u(t) can be approximated in the first
order by

u̇(t) ≈ u(t + 1) − u(t). (11)

Using this approximation we can rewrite the SFA objective function (10) as

∆(ui) ≈
〈
(ui(t + 1) − ui(t))

2
〉

(12)

= 〈ui(t + 1)ui(t + 1)〉 + 〈ui(t)ui(t)〉
− 〈ui(t)ui(t + 1)〉 − 〈ui(t + 1)ui(t)〉 (13)

= 2
〈
ui(t)2

〉
− 2 〈ui(t)ui(t + 1)〉 (14)

(since
〈
ui(t + 1)2

〉
=

〈
ui(t)2

〉
because we average over all t)

= 2 − 2 〈ui(t)ui(t + 1)〉 (15)
(since

〈
ui(t)2

〉
= 1 because u(t) is white (4)) .

Since the constant factor does not matter during optimization, instead of minimizing ∆ (ui) we can

4



maximize

∆̃ (ui) := 1 − 1
2
∆ (ui) (16)

= 〈ui(t)ui(t + 1)〉 (17)

= C
(u)
ii (1) (18)

= qT
i C(y)(1)qi . (19)

The objective function ∆̃ (ui) is a function of the rotation matrix Q and we are thus searching
for the orthogonal weight vectors qi in (19) that maximize ∆̃(ui). The solution for i = 1 is
obviously the eigenvector of the largest eigenvalue of C(y)(1), which yields the slowest component
u1(t) = qT

1 y(t). The following eigenvectors in order of decreasing eigenvalue yield the next slowest
components, u2(t), u3(t), and so forth.

Therefore, to extract all slow components the maximization problem (19) can be formulated as
an eigenvalue problem

C(y)(1)QT = QTΛ (20)

where Λ denotes a diagonal matrix with Λii being the i-th largest eigenvalue and qi the corre-
sponding eigenvectors.

In order to allow a better comparison with second-order ICA, we now want to deduce an
alternative formulation of SFA, i.e. we want to construct an objective function similar to that of
second-order ICA. First, we show the equivalence of solving the eigenvalue problem (20) and the
diagonalization of C(u)(1). If we multiply both sides of (20) with Q we obtain

C(u)(1) = QC(y)(1)QT = Λ . (21)

Since Λ is diagonal, C(u)(1) is diagonal, too. Therefore solving the eigenvalue problem for C(y)(1)
is equivalent to finding a rotation matrix Q such that the time-delayed correlation matrix C(u)(1)
is diagonal. Second, to perform the diagonalization we minimize all off-diagonal entries of C(u)(1)
using the same Jacobi scheme as for second-order ICA (Sec. 3) and define the following objective
function for SFA

Ψ̃SFA :=
∑
i6=j

(C(u)
ij (1))2 (22)

=
∑
i6=j

(
qT

i C(y)(1)qj

)2
. (23)

Minimizing this expression produces the same slow components u1(t), . . . , uN (t) as obtained by the
eigenvalue problem (20), again assuming an additional sorting step. Note also that this is equivalent
to a decorrelation of the time derivatives of the output signal components ui(t) (cf. Wiskott, 2003)
since 〈u̇iu̇j〉 = −2 C

(u)
ij (1) for i 6= j.

Interestingly, the objective function (23) is identical to the one for ICA (9). With this observa-
tion we arrive at the important result that linear SFA is formally equivalent to second-order
ICA with time delay one.

To bring (22) into a form that can be understood more intuitively in the sense of SFA we can
use the fact that the sum of all squared entries of correlation matrices with a given time delay τ is
invariant under orthogonal transformations∑

i,j

(C(u)
ij (τ))2 =

∑
i,j

(C(y)
ij (τ))2 = const. (24)
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We can split this sum in two terms∑
i,j

(C(u)
ij (τ))2 =

∑
i

(C(u)
ii (τ))2 +

∑
i6=j

(C(u)
ij (τ))2 = const , (25)

so that it is easy to see that the minimization of Ψ̃SFA is equivalent to the maximization of

ΨSFA :=
N∑

i=1

(C(u)
ii (1))2 (26)

=
N∑

i=1

(
qT

i C(y)(1)qi

)2
. (27)

Having started from minimizing temporal variations (10) as an objective for SFA we now arrived
at an objective for maximizing squared auto-correlations (26) at time delay one. This relation can
be interpreted intuitively: A signal component with a large squared auto-correlation has a high
temporal predictability. If the auto-correlation is positive (i.e., C

(u)
ii (1) > 0), predictability implies

that the signal component has to vary slowly.
What if the auto-correlation is negative? This could happen if for example ui(t) has alternating

signs for successive data points. Consider the signal

ui(t) :=

{
−1 for t odd
1 for t even

(28)

with 1 ≤ t ≤ T . This signal has zero mean and unit variance and thus fulfills Constraints (3) and (4).
Furthermore, it is favorable in terms of the objective (26), since C

(u)
ii (1) has a large absolute value.

On the other hand, this is a very quickly-varying component, which might seem paradoxical since
maximizing (26) should result in slowly-varying components. This apparent contradiction can be
resolved by studying the constraints imposed on the optimization of (26). Since Q is an orthogonal
matrix, the trace of C(u)(1) is invariant under the transformation u(t) = Qy(t) (e.g., Zurmühl and
Falk, 1997). If we consider all N possible components in the optimization procedure, the decrease
of one correlation C

(u)
ii (1) implies the increase of at least one other correlation C

(u)
jj (1). Therefore

extracting the most slowly-varying signals implies that other extracted components correspond to
the most quickly-varying signals. Hence, it is reasonable to further minimize negative correlations
since this in turn implies that other correlations will be maximized. As above, a successive sorting
step is required to bring the components in order of increasing temporal variation.

5 More than one Time Delay

5.1 Second-order ICA

We know that second-order ICA can always be solved with a single time delay (Tong et al., 1991).
However, the delay τ has to be chosen properly so that all eigenvalues of C(y)(τ) are distinct. To
obtain a more robust method one can consider a certain number T of time-delayed correlation
matrices with respective time delays τ = 1, 2, . . . , T and diagonalize them jointly (Belouchrani
et al., 1997; Ziehe and Müller, 1998). This leads to a straightforward extension of objective (8)

6



subject to minimization

ΨICAj :=
T∑

τ=1

κτΨICA(τ) (29)

=
T∑

τ=1

κτ

∑
i6=j

(C(u)
ij (τ))2 (30)

=
T∑

τ=1

κτ

∑
i6=j

(
qT

i C(y)(τ)qj

)2
, (31)

where we additionally introduced positive factors κτ that allow us to weight correlation matrices
with different time delays differently. In (29) we write ICAj for joint-diagonalization ICA. Pham and
Garat (1997) have derived a formula closely related to (31) with a maximum likelihood approach.

Extending the objective function of ICA in this way leads to the joint diagonalization of several
correlation matrices with different time delays. Decorrelation is thus achieved over a time window
of length T . It is intuitively clear that by enlarging the window length the unmixing performance
should improve until the width of the autocorrelation function is reached. Exceeding this limit
would introduce matrices consisting entirely of zero-mean noise, which would degrade the unmixing
performance.

5.2 Linear SFA

5.2.1 Joint Diagonalization

We can use an argument similar to the one used for second-order ICA in order to extend SFA to
more than a single time delay. Adding more time-delayed auto-correlations increases the temporal
predictability of the signal: Knowing the amplitude of a signal at a given time can give a good
prediction for the next T time points since they are strongly correlated. Signals with large temporal
predictability are in turn likely to be slowly-varying (cf. the end of Sec. 4). Thus an intuitive
extension of the normal SFA objective (26) subject to maximization is

ΨSFAj :=
T∑

τ=1

κτΨSFA(τ) (32)

=
T∑

τ=1

κτ

N∑
i=1

(C(u)
ii (τ))2 (33)

=
T∑

τ=1

κτ

N∑
i=1

(
qT

i C(y)(τ)qi

)2
. (34)

As in (29–31), we have introduced weighting factors κτ for the delayed correlation matrices. Note
that this new objective (33, 34) is again equivalent to the ICA objective (30, 31) due to the
constancy of the sum of all squared entries of each time-delayed correlation matrix (25).

We must be careful, however, with this definition for two reasons. First, while the definition
of slowness based on C

(u)
ii (1) corresponds to our intuition of what a slow signal is, C

(u)
ii (2) can

have a large positive value for signal components that we would not consider to be slow at all. In
fact, the alternating signal (28) would yield a maximal value for C

(u)
ii (2). Second, consider the case

where two time-delayed auto-correlations have opposite signs, e.g. C
(u)
ii (1) < 0 and C

(u)
ii (2) > 0.

Maximizing objective function (33) would favor a decreasing value of C
(u)
ii (1) (since it is negative)
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and an increasing value of C
(u)
ii (2). The former would intuitively tend to make the signal faster,

while the latter would make it slower. Thus, if the auto-correlations of a component have different
signs for different time-delays, the objective function appears to be inconsistent, at least for that
component. This conflict cannot be solved as easily as the one discussed at the end of Section 4.
However, one can at least monitor the signs of the auto-correlations and diagnose the inconsistent
cases. It is not clear to us how often these two problems arise in practice. We believe that by
weighting the first auto-correlation stronger than the others, e.g. with an exponential decay of the
weights, the inconsistencies can be largely avoided.

5.2.2 Linear Filtering

An alternative to the joint diagonalization of several correlation matrices with different time delays
in analogy to second-order ICA is to average over a range of time delays within one correlation
matrix and diagonalize just this one matrix. To do so we introduce the following new measure of
slowness (cf. 16–19):

Σ̃ (ui) :=
〈

ui(t)
( T∑

τ=1

κτ ui(t + τ)
)〉

(35)

=
T∑

τ=1

κτ 〈ui(t)ui(t + τ)〉 (36)

=
T∑

τ=1

κτC
(u)
ii (τ) (37)

= qT
i

( T∑
τ=1

κτC(y)(τ)
)
qi (38)

=: qT
i C̃(y)qi , (39)

with constants κτ that weight different time delays differently. This definition differs from that of
(16–19) in that ui(t) should not only be well correlated to the next data point but to a weighted av-
erage over the next T data points. This is a straightforward way of taking several time scales into ac-
count. Note that the weighted averaging is a linear-filter operation. As in the joint-diagonalization
extension, exponentially decaying weights κτ := exp (−γτ) for different time delays seem to be a
suitable choice. With such weights this measure of slowness is similar to the objective of temporal
smoothness used by Stone (1995) and somewhat related to the trace learning rules first introduced
by Földiák (1991).

Because of the similarity of (39) with (19) we can apply the steps that led from (19) to (27)
and derive the following objective function to be maximized

ΨSFAl :=
N∑

i=1

(
C̃

(u)
ii

)2 (40)

=
N∑

i=1

(
qT

i C̃(y)qi

)2
, (41)

where C̃(u) is defined analogously to C̃(y) and SFAl stands for linear-filtering SFA. Since this
objective function is based on just one correlation matrix, it does not have the problems mentioned
above for the joint-diagonalization extension (Sec. 5.2.1).
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Blaschke (2005, sec. 8.2.2) also considered extending SFA by simultaneously minimizing the vari-
ance not only of the first but also of higher-order derivatives, which could result in even more stable
signals. This would also lead to (41), because discrete approximations of higher-order derivatives
involve multiple time delays. In this case, with positive weights for all derivatives, the constants κτ

in (38) would have values with alternating signs (positive for odd τ and negative for even τ), which
is somewhat counterintuitive. We do not fully understand the implications of this effect but believe
that higher-order derivatives do not offer a good way of extending SFA to longer time-scales, even
though unmixing performance was actually good in some simple examples.

6 Conclusion

The main result of this work is that linear SFA and second-order ICA with time delay one are
formally equivalent, see (23) and (9). This is surprising, because SFA and ICA are based on two
very different principles: slowness vs. statistical independence. These principles might seem to
contradict each other, because two analog signals of finite length would typically become more
statistically dependent if they are more slowly varying.

The formal equivalence of linear SFA and second-order ICA with time delay one allows us to
apply the intuition we have gained for one algorithm to deepen our understanding of the other. For
example, it is known that higher-order ICA applied to natural images learns linear filters similar
to Gabor wavelets (e.g. Bell and Sejnowski, 1997; van Hateren and van der Schaaf, 1998), which in
turn resemble receptive fields of simple cells in V1. On the other hand, linear SFA (and therefore
also second-order ICA with time delay one) applied to natural image sequences learns filters similar
to the principal components of natural images, the first of which are effectively spatial low-pass
filters and therefore also generate slowly-varying output signals. This suggests that the solutions
found by second-order ICA and higher-order ICA can be very different in practice even though
both methods try to maximize statistical independence.

Despite the formal equivalence in the linear case and for time delay one, SFA and ICA have
different objectives and differ in the more general case.

First, while in standard SFA the time delay is fixed to one due to the approximation of the time
derivative, in ICA it can be chosen freely, or one can rather use several correlation matrices with
different time delays simultaneously for optimal unmixing (Sec. 5.1). We have seen (Sec. 5.2.1)
that the same extension to several time delays can also be used for SFA, but that the algorithm
then becomes inconsistent with respect to the slowness objective if the entries of the time-delayed
correlation matrices have different signs for different delays. An extension more consistent with
the slowness objective is based on linear filtering before computing the time derivative (Sec. 5.2.2).
This also introduces several time delays, but in a different way than used for ICA. Thus, when
taking several time delays into account, the conceptual differences between ICA and SFA become
relevant.

Second, in the nonlinear case many output signal components can be extracted from a lower
dimensional input signal. With SFA they would all be uncorrelated and ordered by slowness, in
agreement with the definition in Equations (3–5, 10). With second-order ICA they would not be
ordered in any way nor would they be statistically independent for dimensionality reasons. The
results would therefore be inconsistent with the ICA objective. Thus, in the nonlinear case the
conceptual differences between ICA and SFA also matter.

We believe that the close relation between linear SFA and second-order ICA will lead to a
way to combine the two algorithms into a nonlinear method for extracting slowly varying and
statistically independent components and thereby perform nonlinear blind source separation. This
is the subject of current research (Blaschke and Wiskott, 2004b, 2005).
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Földiák, P. (1991). Learning invariance from transformation sequences. Neural Computation,
3(2):194–200. 8

Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis.
IEEE Transactions on Neural Networks, 10(3):626–634. 3

Hyvärinen, A., Karhunen, J., and Oja, E. (2001). Independent component analysis. Wiley Series
on Adaptive and Learning Systems for Signal Processing, Communications, and Control. John
Wiley & Sons, New York. 1

Hyvärinen, A. and Pajunen, P. (1999). Nonlinear independent component analysis: existence and
uniqueness results. Neural Networks, 12(3):429–439. 2

Jutten, C. and Karhunen, J. (2003). Advances in nonlinear blind source separation. In Proc. of
the 4th Int. Symposium on Independent Component Analysis and Blind Signal Separation, pages
245–256. 2

10

http://www.tsi.enst.fr/~cardoso/Papers.PDF/ieeesobi.pdf
http://www.tsi.enst.fr/~cardoso/Papers.PDF/ieeesobi.pdf
ftp://sig.enst.fr/pub/jfc/Papers/iee.ps.gz
http://www.tsi.enst.fr/~cardoso/Papers.PDF/siam_note.pdf
http://www.i3s.unice.fr/~comon/FichiersPs/SP94full.ps.gz
http://www.cis.hut.fi/aapo/ps/TNN99.pdf
http://www.cs.helsinki.fi/u/ahyvarin/papers/NN99.pdf
http://www.cs.helsinki.fi/u/ahyvarin/papers/NN99.pdf
http://www.cis.hut.fi/juha/papers/ica03inv-tr2.ps.gz


Lee, T.-W., Girolami, M., and Sejnowski, T. (1999). Independent component analysis using an
extended Infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Com-
putation, 11(2):409–433. 3

Molgedey, L. and Schuster, G. (1994). Separation of a mixture of independent signals using time-
delayed correlations. Physical Review Letters, 72(23):3634–3637. 2, 3

Nuzillard, D. and Nuzillard, J.-M. (2003). Second-order blind source separation in the Fourier
space of data. Signal Processing, 83(3):627–631. 2

Pearlmutter, B. and Parra, L. (1996). A context-sensitive generalization of ICA. In Proc. of the
International Conference on Neural Information Processing. Springer Verlag. 3

Pham, D. and Garat, P. (1997). Blind separation of mixtures of independent sources through a
maximum likelihood approach. IEEE Transactions on Signal Processing, 45(7):1712–1725. 7

Stone, J. (1995). A learning rule for extracting spatio-temporal invariances. Network, 6(3):1–8. 8

Tong, L., Liu, R., Soon, V. C., and Huang, Y.-F. (1991). Indeterminacy and identifiability of blind
identification. IEEE Transactions on Circuits and Systems, 38(5):499–509. 6

van Hateren, J. and van der Schaaf, A. (1998). Independent component filters of natural images
compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B, 265:359–366. 9

Wiskott, L. (2003). Slow feature analysis: A theoretical analysis of optimal free responses. Neural
Computation, 15(9):2147–2177. 5

Wiskott, L. and Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances.
Neural Computation, 14(4):715–770. 1, 2, 4

Zibulevsky, M. and Pearlmutter, B. (2000). Second order blind source separation by recursive
splitting of signal subspaces. In Proc. of the 2nd Int. Workshop on Independent Component
Analysis and Blind Signal Separation, pages 489–491. 2

Ziehe, A. and Müller, K.-R. (1998). TDSEP—an efficient algorithm for blind separation using time
structure. In Proc. of the 8th Int. Conference on Artificial Neural Networks, pages 675 – 680.
Springer Verlag. 2, 3, 6
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