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Outstanding issues with PPC
1) No known learning method
    Adapting to a changing prior
    Learning the connection strengths
2) Complex models: multimodal/non-linear
3) Encoding multiple dependent variables 

Sensory cues are combined according to:
uncertainty (Ernst and Banks, 2002) and the prior (Knill, 2002)
Priors can be learned (Körding and Wolpert, 2003)
Multiple, dependent variables (Knill, 2002)
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How are these computations supported by cortex?

vEM Interpretation of PPC

E-Step: usual PPC update, modified 
if sum of tuning curves not constant 

M-Step: On-line learning rules

Extended PPC to complex learning tasks
      Adapting to a changing prior and learning the network connection strengths
Viewed PPC as encoding an approximate representation of the posterior
      Connected PPC to vEM which then provides learning rules 
Some of the attractive properties of PPC have to be sacrificed
      Updates become non-linear in general and gains must be inferred/learned
Extendedable to more complex models, but neurally plausible implementations will 
require further approximations
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One candidate: probabilistic population codes (PPCs)

Parameters of the prior can be learned

The network can be wired up in an
unsupervised manner
Always requires non-linear E-Step

Solution: Generalise PPC using vEM
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