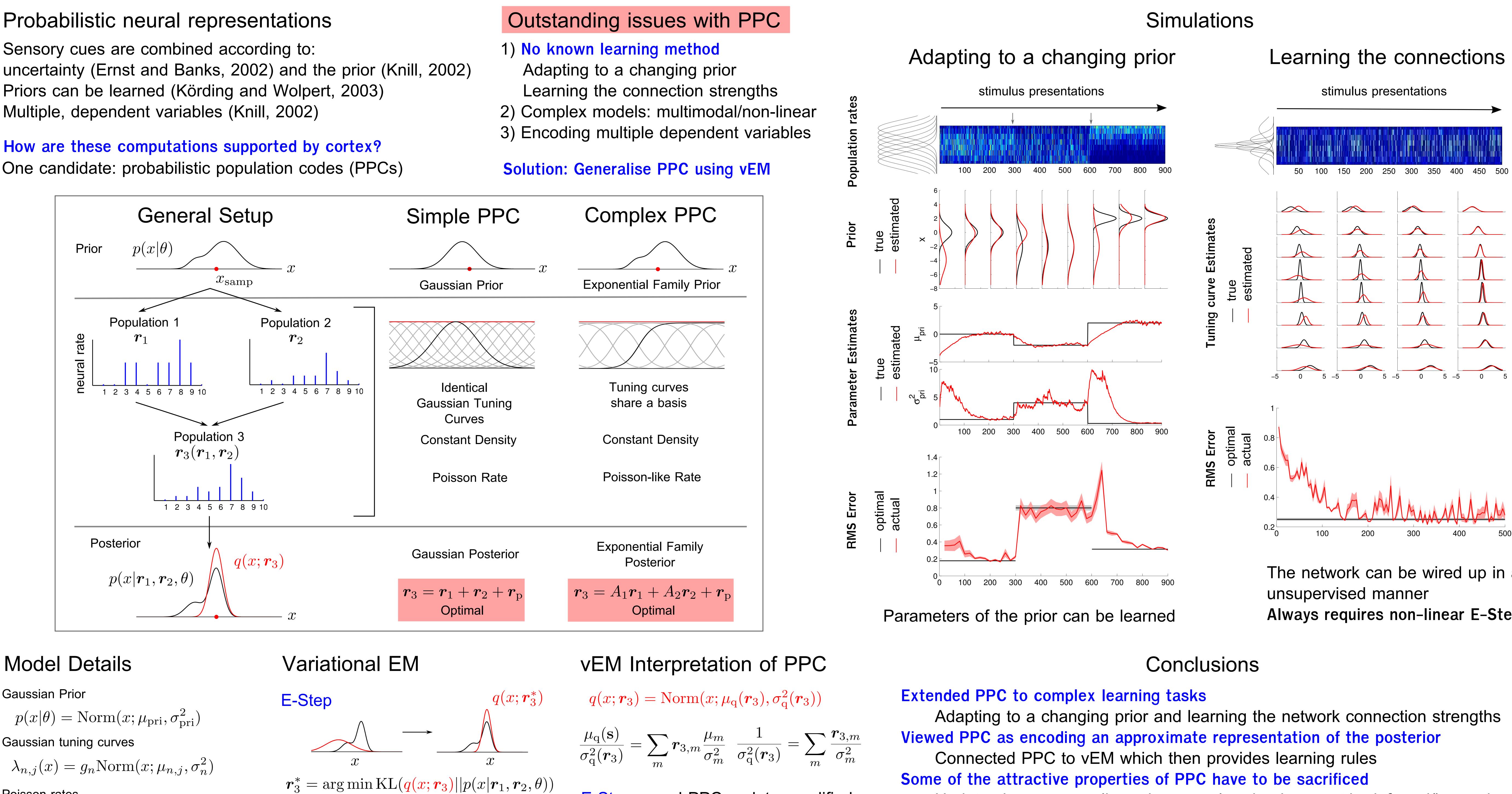
Learning complex tasks with probabilistic population codes Richard E. Turner,¹ Pietro Berkes² and József Fiser^{2,3}

1) CBL, Dept Engineering, University of Cambridge, UK. 2) Volen Center for Complex Systems, Brandeis University. 3) Dept of Psychology and Neuroscience Program, Brandeis University

Probabilistic neural representations

Sensory cues are combined according to: Priors can be learned (Körding and Wolpert, 2003) Multiple, dependent variables (Knill, 2002)

How are these computations supported by cortex? One candidate: probabilistic population codes (PPCs)



Model Details

Gaussian Prior

$$p(x|\theta) = \operatorname{Norm}(x; \mu_{\text{pri}}, \sigma_{\text{pri}}^2)$$

Gaussian tuning curves

$$\lambda_{n,j}(x) = g_n \operatorname{Norm}(x; \mu_{n,j}, \sigma_n^2)$$

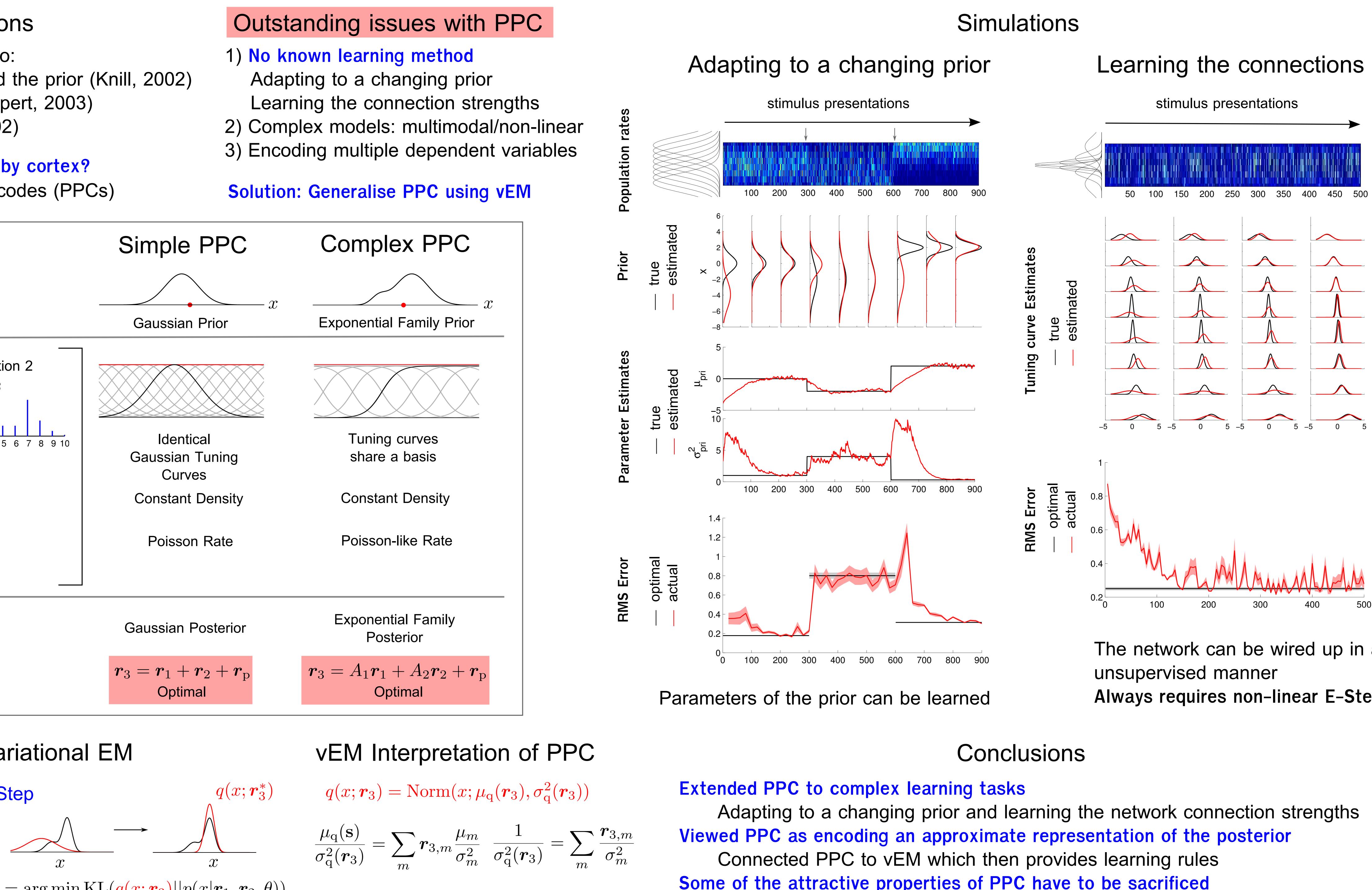
Poisson rates

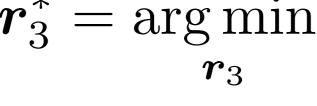
$$p(\mathbf{r}_{n,j}|x,\theta) = \mathrm{Poisson}(\mathbf{r}_{n,j};\lambda_{n,j}(x))$$

Posterior distribution

$$p(x|\mathbf{R}, \theta) \propto \operatorname{Norm}(x; \mu_*(\mathbf{R}), \sigma_*^2(\mathbf{R}))$$

 $\times \exp(-\sum_{n,j} \lambda_{n,j}(x))$





M-Step

Supervised-like: Fill in x using $q(x; r_3^*)$

 $\theta_3^* = \arg\max_{\boldsymbol{\rho}} \langle \log p(x, \boldsymbol{r}_1, \boldsymbol{r}_2, \theta) \rangle_{\boldsymbol{q}(x; \boldsymbol{r}_3)}$

E-Step: usual PPC update, modified if sum of tuning curves not constant

 $\tau \frac{d\boldsymbol{r}_3}{dt} = f(A_1\boldsymbol{r}_1 + A_2\boldsymbol{r}_2, B\boldsymbol{r}_3)$

M-Step: On-line learning rules

$$\overline{r_{3}} = \sum_{m} rac{r_{3,m}}{\sigma_m^2}$$

Some of the attractive properties of PPC have to be sacrificed Updates become non-linear in general and gains must be inferred/learned Extendedable to more complex models, but neurally plausible implementations will require further approximations

Ernst and Banks, Humans integrate visual and haptic information in a statistically optimal fashion, Nature, 2002 Körding and Wolpert, Bayesian integration in sensorimotor learning, Nature, 2004 Knill, Mixture models and the probabilistic structure of depth cues, Vision Research, 2003

UNIVERSITY OF CAMBRIDGE

The network can be wired up in an Always requires non-linear E-Step

References