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• Artificial data generated from sparse,
Maximum-A-Posteriori model of natural
images
• Fixed number of components, alpha=2.5
• Has scale and statistical structure of main
simulations

MAP model with 
K component

image-like 
data

Model selection
• One possibility is to implement different models and find
the one which is most “similar” to visual processing

• Bayesian perspective:
• compare marginal likelihood of the model

• automatic Occam's razor
• natural if hypothesis is that the visual system
implements an optimal generative model

Overcomplete case: # latent variables > # input dimensions
An overcomplete 1D model with 2 components:

Gaussian Laplace Student-t

Addressed questions
• How sparse? Which family of distributions?
• How overcomplete? (overfitting) (see also Olshausen
and Millman, 2000)
• One might expect a tradeoff between sparseness and
overcompleteness

Linear, sparse coding model

Abstract

Computational models of visual cortex, and in particular
those based on sparse coding, have enjoyed much recent
attention. Despite this currency, the question of how sparse
or how over-complete a sparse representation should be,
has gone without principled answer. Here, we use Bayesian
model-selection methods to address these questions for a
sparse-coding models based on a Student-t prior and on a
Gaussian scale mixture model with uniform prior on
precision. We find that natural images are indeed best
modeled by extremely sparse distributions, although for
these priors, the associated optimal basis size is only
modestly over-complete (Berkes et al., 2008).

Model selection in practice

•Strategy:
• Use Automatic Relevance Determination (ARD) prior,
Variational Bayes Expectation Maximization (VBEM) to
determine the posterior over parameters and the
overcompleteness
• Unfortunately VBEM is biased (cannot use the free energy)
• Compute the likelihood of the learned model using
Annealed Importance Sampling (AIS)

ARD (Bishop, 1999; Beal, 2003)

• Gaussian prior over the components that favors small weights;
hyperprior over the precisions to keep the prior uninformative

• Start with excess of components, let the inference process
prune the weights which are unnecessary
• Learning using VBEM

Why VBEM is biased

The free energy bound is tightest where q(V,Theta) is a good
match to the true posterior. At high sparsities, the true posterior
is multimodal and highly non-Gaussian. At low sparsities, the true
posterior is Gaussian-like and unimodal. q(V,Theta) is always
unimodal.
There is an additional bias toward complete solutions, due to the
fact that the posterior of an overcomplete solution is more
multimodal and thus less Gaussian. This is investigated in a set
of simulations with artificial data. The simulations confirm that the
bias exist, but the solution found are still considerably more
overcomplete than those found in the main simulations.

Annealed Importance Sampling (Neal, 2001)

Idea 1: Simulated annealing

Idea 2: Importance sampling: View annealing as defining an
importance sampling distribution over

Guarantees asymptotic correctness.

The posterior distribution in very sparse, overcomplete
models are complex and multimodal.
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(Olshausen & Field, 1996, 1997) 

OC level for the 
optimal model

max OC level in the 
Student-t simulations

single VBEM run 
best VBEM run 

• 2D, 3 components, alpha = 2.5
• 3000 data points
• model initialized with K=7 components

Correct number of sources always 
recovered, except in sparsest case (5)

Artificial data

Natural data
• 9x9 patches from 36 natural images 
(van Hateren’s)
• dimensionality reduced to 36 by PCA
• model initialized to K=108 components
• batch of 3600 patches at every iteration

Free energy Marginal likelihood Overcompleteness
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Model comparison

• Within the Student-t family and the uniform
GSM family, the optimal model for natural
images is very sparse, but only modestly
overcomplete
• Very sparse Student-t distribution is a
better prior than the uniform GSM prior
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Image-like data


