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Abstract

Variational methods are a key component of the approximate inference and learn-
ing toolbox. These methods fill an important middle ground, retaining distribu-
tional information about uncertainty in latent variables,unlike maximum a pos-
teriori methods (MAP), and yet requiring fewer computational resources than
Monte Carlo Markov Chain methods. In particular the variational Expectation
Maximisation (vEM) and variational Bayes algorithms, bothinvolving variational
optimisation of a free energy, are widely used in time-series modelling. Here, we
investigate the success of vEM in simple probabilistic time-series models. First
we consider the inference step of vEM, and show that a consequence of the well-
known compactness property is a failure to propagate uncertainty in time, thus
limiting the usefulness of the retained distributional information. In particular, the
uncertainty may appear to be smallest precisely when the approximation is poor-
est. Second, we consider parameter learning and analytically reveal systematic
biases in the parameters found by vEM. Surprisingly, simpler variational approxi-
mations (such a mean-field) can lead to less bias than more complicated structured
approximations.

1 The variational approach

We begin with a very brief review of vEM. The Expectation-Maximisation (EM) algorithm [1]
is a standard approach to finding maximum likelihood (ML) parameters for latent variable models,
including hidden Markov Models and linear or non-linear state space models (SSMs) for time-series.
The algorithm can be re-formulated as a variational optimisation of a free-energy [2, 3]. Consider
observations collected into a setY , that depend on latent variablesX and parametersθ. We seek to
maximiselog p(Y |θ) with respect toθ. By introducing a new distribution over the latent variables
q(X), we can write

log p(Y |θ) = log

∫

dX p(Y, X |θ) = log

∫

dX p(Y, X |θ)
q(X)

q(X)
, (1)

≥

∫

dX q(X) log
p(Y, X |θ)

q(X)
= F (q(X), θ). (2)

This last quantity is the free energy. It is smaller than the log-likelihood by an amount equal to
the Kullback-Leibler (KL) divergence betweenq(X) and the posterior distribution on the latents
p(X |Y, θ)

F (q(X), θ) = log p(Y |θ) − KL(q(X)||p(X |Y, θ)), (3)

For fixedθ, the optimum value forq is clearly equal top(X |Y, θ), at which point the KL divergence
vanishes and the free energy equals the log-likelihood. Thus, alternate maximisation ofF (q, θ)
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with respect toq (the E-step) andθ (the M-step) will eventually find parameters that maximise the
likelihood.

In many models, calculation of this posterior is intractable. Thus, the vEM approach is to instead
optimiseq restricted to a class of distributionsQ, within which the minimum of the KL divergence
can tractably be found. The optimalq is called the variational approximation to the posterior. Con-
strained optimisation ofq now alternates with optimisation ofθ to find a maximum of the free
energy, though not necessarily the likelihood. The optimalparameters are taken to approximate the
ML values.

Most often, the classQ is defined to contain all distributions that factor over disjoint setsCi of the
latent variables in the problem:q(X) =

∏I

i=1 qi(xCi
). For example, if each latent variable appears

in a factor of it own, the approximation is calledmean-field. Partial factorisations, which keep some
of the dependencies between variables are calledstructured approximations. In both cases theqi’s
are found iteratively, by repeating the following updates,

q(xi) ∝ exp
(

〈log p(Y, X |θ)〉Q

j 6=i
qj(xCj

)

)

. (4)

Here, we analyse the accuracy of vEM in two stages. We first look at the relationship between
the true posterior distribution and the variational approximation. It is well known that variational
methods tend to be compact [4]. For instance, a unimodal variational approximation to a multi-
modal distribution will match the largest mode [5], rather than averaging across all of them, and
a spherical Gaussian variational approximation will matchthe shortest length-scale of a correlated
Gaussian. We show that this compactness results in a complete failure to propagate uncertainty be-
tween time-steps, often making the variational approximation most over-confident exactly when it
is poorest. We then consider the accuracy of the vEM parameter estimates. As the variational bound
on the likelihood is parameter dependent, variational methods can be biased away from peaks in
the likelihood, toward regimes where the bound in tighter. As a result, the best approximations for
learning are not necessarily the tightest, but rather thosethat result in bounds which depend least on
the parameters. Both of these properties are exemplified using simple time-series models, although
the conclusions are likely to apply more generally.

2 Variational approximations do not propagate uncertainty

Fully factored variational approximations (so called mean-field approximations) have been used for
inference in time-series models as they are fast and yet still return estimates of uncertainty in the
latent variables [6]. Here, we show that in a simple model, the variational iterations fail to propagate
uncertainty between the factors, rendering these estimates of uncertainty particularly inaccurate in
time-series (see [7] for a related example).

We consider a time-series model with a single latent variable xt at each time-step drawn from an
AR(1) prior with coefficientλ and innovations varianceσ2,

p(xt|xt−1) = Norm(λxt−1, σ
2). (5)

The marginal mean of this distribution is zero and the marginal variance isσ2
∞ = σ2

1−λ2 . Typically
the latent variables are assumed carry strong temporal correlations, so thatλ is close to 11. We
consider arbitrary instantaneous likelihood functions,p(yt|xt). Using an approximating distribution
which is factored over timeq(x1:T ) =

∏T
t=1 q(xt), the update for the latent variable at timet follows

from Eq.4,

q(xt) =
1

Z
p(yt|xt) exp(〈log p(xt|xt−1)p(xt+1|xt)〉q(xt−1)q(xt+1)), (6)

=
1

Z ′
p(yt|xt)Norm

(

λ

1 + λ2
(〈xt−1〉 + 〈xt+1〉) ,

σ2

1 + λ2

)

=
1

Z ′
p(yt|xt)qprior(xt). (7)

1In fact the effective time-scale of Eq.5 is τeff = −1/ log(λ) and so a change inλ from 0.9 to 0.99
is roughly equivalent to a change from0.99 to 0.999. This is important when the size of the biases in the
estimation ofλ are considered.
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That is, the variational update is formed by combining the likelihood with a variational prior-
predictiveqprior(xt) that contains the contributions from the latent variables at the adjacent time-
steps. This variational prior-predictive is interesting because it is identical to the true prior-predictive
when there is no uncertainty in the adjacent variables. Thatis, noneof the (potentially large) uncer-
tainty in the value of the adjacent latent variables is propagated toq(xt), and the width of the varia-
tional predictive is consequently narrower than the width of state-conditional distributionp(xt|xt−1)
(compare to Eq.5)2.

Temporally factored variational methods for time-series models will thus generally recover an ap-
proximation to the posterior which is narrower than the state-conditional distribution. As the whole
point of time-series models is that there are meaningful dependencies in the latents, and therefore the
state-conditional often has a small width, the variationaluncertainties may be tiny compared to the
true marginal probabilities. Thus, the mean-field approachessentially reduces to iterative MAP-like
inference, except that we find the mean of the posterior rather than a mode. In the next section, it will
be shown that this does have some advantages over the MAP approach, notably that pathological
spikes in the likelihood can be avoided.

In conclusion, although variational methods appear to retain some information about uncertainty,
they fail to propagate this information between variables.In particular, in time-series with strong
correlations between latents at adjacent times, the variational posterior becomes extremely concen-
trated, even though it is least accurate. An ideal distributional approximation would perhaps behave
in the opposite fashion, returning larger uncertainty whenit is likely to be more inaccurate.

3 Variational approximations are biased

In the last section we showed that variational approximations under-estimate the uncertainties in in-
ference. We now ask how these inaccuracies might affect the parameter estimates returned by vEM.
This question is important in many contexts. For example, scientific enquiry is often concerned with
the values of a parameter, to substantiate claims like “natural scenes vary slowly” or “natural sounds
are sparse”, for instance.

What makes for a good variational approximation in this case? The instant reaction is that the free-
energy should be as close to the likelihood as possible. Thatis KL(q(X)||p(X |Y, θ)) should be as
small as possible for allX . However, from the perspective of learning it is more important to be
equally tight everywhere, or in other words it is more important for the KL-term to be asparameter-
independent as possible: IfKL(q(X)|p(X |Y, θ)) varies strongly as a function of the parameters,
this can shift the peaks in the free-energy away from the peaks in the likelihood, toward the regions
were the bound is tighter. (See [8] for a related example for variational Bayes in mixture models.)

We now illustrate this effect in a linear SSM. In particular,we show that the mean-field approxima-
tion can actually have less severe parameter-dependent biases than two structural approximations,
and can therefore lead to better vEM parameter estimates, even though it is less tight everywhere.

Deriving the learning algorithms
In the following we first introduce an elementary SSM, for which we can find the exact likeli-
hood (log p(y|θ)). We then examine the properties of a set of different variational learning algo-
rithms. This set comprises a mean-field approximation, two different structural approximations, and
zero-temperature EM. This final approximation can be thought of as vEM where the approximating
distributions are delta functions centred on themaximum a posteriori(MAP) estimates [3]. The
analysis of these schemes proceeds as follows: First the optimal E-Step updates for these approxi-
mations are derived; Second, it is shown that, as the SSM is a simple one, the free-energies and the
zero-temperature EM objective function can be written purely in terms of the parameters. That is,
maxq(x) F (θ, q(x)) andmaxX log p(Y, X |θ) have closed form solutions, and do not require itera-
tive updates to be computed as is usual. Thus, we can study therelationship between the peaks in
the likelihood and the peaks in the free-energies and zero-temperature EM objective function, for
any dataset. An outline of the derivation of these quantities is given here, but for more detail see the
associated technical report [9].

2This problem only gets worse if the prior dynamics have longer dependencies, e.g. ifp(xt|xt−1:t−τ ) =

Norm(
Pτ

t′=1
λt′xt−t′ , σ

2) then the variational prior-predictive has a variance, σ2

1+
P

τ
t′=1

λ2

t′
.
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Consider an SSM which has two latent variables per time-stepand two time-steps. We take the
priors on the latent variables to be linear-Gaussian, and the observations are given by summing the
latents at the corresponding time-step and adding Gaussiannoise,

p(xk,1) = Norm

(

0,
σ2

x

1 − λ2

)

, (8)

p(xk,2|xk,1) = Norm
(

λxk,1, σ
2
x

)

, (9)

p(yt|x1,t, x2,t) = Norm(x1t + x2t, σ
2
y). (10)

This defines a joint Gaussian over the observations and latent variables. From this we can compute
the likelihood exactly by marginalising,

p(y1, y2|θ) = Norm(0, ΣY ), ΣY = Iσ2
y + 2

σ2
x

1 − λ2

[

1 λ
λ 1

]

. (11)

The posterior distribution over the latent variables is also Gaussian, and is given by,p(x|y) =
Norm(µ

x|y, Σx|y), wherex = [x11, x21, x12, x22]
T . The covariance and mean are

Σ−1
x|y =













1
σ2

y
+ 1

σ2
x

1
σ2

y
− λ

σ2
x

0
1

σ2
y

1
σ2

y
+ 1

σ2
x

0 − λ
σ2

x

− λ
σ2

x
0 1

σ2
y

+ 1
σ2

x

1
σ2

y

0 − λ
σ2

x

1
σ2

y

1
σ2

y
+ 1

σ2
x













, µ
x|y =

1

σ2
y

Σ
x|y







y1

y1

y2

y2






. (12)

The posterior is correlated through time because of the linear-Gaussian prior, and correlated across
chains because of explaining away. The correlations through time increase as the prior becomes
slower (|λ| increases) and less noisy (σ2

x decreases). The correlations across chains increase as the
observation noise (σ2

y) decreases.

We now derive the optimal E-Step for four different approximations: The first three approximations
provide uncertainty estimates and these are the fully factored mean-field approximation (q1), fac-
torisation over chains but not time (q2), and factorisation over time but not chains (q3), as shown
in the following table: The optimal E-Step updates for thesethree distributions can be found by

factored over time unfactored over time
factored over chainsq1(x) = q11(x11)q12(x12)q13(x21)q14(x22) q2(x) = q21(x11, x12)q22(x21, x22)

unfactored over chains q3(x) = q31(x11, x21)q32(x12, x22) p(x|y) = q(x11, x12, x21, x22)

minimising the variational KL. Each factor is found to be Gaussian, with a mean and precision that
match the corresponding elements inµ

x|y andΣ−1
x|y. The fourth and final approximation is zero-

temperature EM (q4), for which the E-Step is given by the MAP estimate for the latent variables.
As the posterior is Gaussian, the mode and the mean are identical and so the MAP estimates are
identical to the variational values for the means.

The next step is to compute the free-energies. In the first three cases, the Gaussianity of the posterior
as well asq1, q2, andq3 makes it possible to compute the KL divergences analytically:

KLi

(

A
∏

a=1

qia(xa)||p(x|y)

)

=
1

2
log

∏

Σia

Σ
x|y

. (13)

Using this expression we find,

KL1 =
1

2
log

(

σ2
y + σ2

x

)4

σ4
yγ

, KL2 =
1

2
log

(

(

σ2
y + σ2

x

)2
− λ2σ4

y

)2

σ4
yγ

, (14)

andKL3 =
1

2
log

(

σ2
y + 2σ2

x

)2

γ
, (15)

whereγ = (1−λ2)
(

(2σ2
x + σ2

y)2 − λσ4
y

)

. In the fourth approximation, theKL divergence between
a Gaussian and a delta function is infinite. Therefore, theKL term is discarded for zero-temperature
EM and the log-joint is used as a pseudo-free energy.
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Figure 1: Biases in the Free-energies for a simple linear dynamical system. True/ML parameters are
λ = 0.9, σ2

x = 1 − λ2 = 0.19, andσ2
y = 0.43. In each case one parameter is learned and the others

are set to their true/ML values. A. learningλ, B. learningσ2
y. Large panels show the uncertainty

preserving methods (q1:3). Small panels show the zero-temperature EM approach (q4). The bottom
two panels show a zoomed in region of the top two panels.

General properties of the bounds: A sanity check
We now verify that these results match our intuitions. For example, as the mean field approxi-
mation is a subclass of the other approximations, it isalwaysthe loosest of the bounds,KL1 >
KL2, KL3 > 0. Furthermore, approximation 3 (factorising over time) becomes looser than ap-
proximation 2 (which does not) when temporal correlations dominate over the correlations between

chains. This is indeed the case asKL3 > KL2 whenr =
σ2

x

|λ|σ2
y

< 1. Moreover, approximation

2 (which factorises over chains) is equivalent to the mean field approximation,KL1 = KL2, when
there are no temporal correlations,λ = 0 or σ2

x = ∞, and in this case the true posterior matches ap-
proximation 3,KL3 = 0. Similarly, approximation 3 is equivalent to the mean-fieldapproximation
when the observation noise is infinityσ2

y = ∞, and here approximation 2 is exactKL2 = 0.

We can now consider how the maxima in the likelihood relate tothe maxima in the Free-energies.
Unfortunately, there is no closed form solution for these maxima, but in the simple examples which
follow, the free-energies and likelihoods can be visualised. In general, we use as our data-set a large
number of samples drawn from the forward model (N > 10000) and in all cases the ML parameters
are essentially equal to the true parameters.

The model has a total of three parameters. We first consider learning just one of these parameters
and set the others to the true/ML value. This will allow us to develop some intuition about the ways
in which different approximations lead to different biasesin the parameter estimates. In this case,
the likelihood and free-energies are easy to visualise; some typical examples are shown in Fig.1.
We then consider how the bias changes as a function of the true/ML parameters, and observe that
there is no universally preferred approximation, but instead the least biased approximation depends
on the parameter that is being learned and on the value of the true/ML parameters. Finally, in we
will study the bias when learning the dynamic parameter and the observation noise simultaneously.

Learning the dynamical parameter, λ
We begin by considering learningλ, with the other parameters fixed. As the magnitude of the

dynamical parameter increases, so does the correlation in the posterior between successive latent
variables in the same chain, that isxk,1 andxk,2. This means the factorisation over time results
in looser bounds as the magnitude ofλ increases (KL3 increases, Eq.3). Furthermore, as the
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correlation between latents in the same chain increases, (xk,1 andxk,2), so does the correlation
betweenx11 andx22 (propagated by the explaining away). This means, somewhat surprisingly, that
the approximation which does not factorise over time, but over chains, also becomes looser as the
magnitude ofλ increases. That is,KL2 increases with the magnitude ofλ. Due to the fact that
both bounds become less tight asλ increases, the free-energies peak at lower values ofλ than the
likelihood does, and therefore yield under-estimates (see[10] for a similar result).

The mean-field approximation suffers from both of the aforementioned effects, and it is therefore
looser than both. However, with regard to their dependence on λ, KL1 andKL3 are equivalent.
This means that the mean field approximation and the approximation that factors over time recover
identical values for the dynamical parameter, even though the former is looser. Curiously, the so-
lution from zero-temperature EM is alsoidentical to the mean-field (q1) and temporally factored
(q3) solutions. One of the conclusions to draw from this is that most severe approximation need not
necessarily yield the most biased parameter estimates.

Learning the observation noise, σ2
y , and the dynamical noise, σ2

x

Next we consider learningσ2
y , with the other parameters fixed to their true values. Due to explain-

ing away, decreasing the observation noise increases the correlation between variables at the same
time step, i.e., betweenx1t andx2t. This means that the approximation that factors over chains,
becomes worse asσ2

y decreases, and thereforeKL2 is an increasing function ofσ2
y . In contrast, the

approximation that factorises over time, but not over chains, becomes tighter asσ2
y decreases i.e.

KL3 is a decreasing function ofσ2
y . As the mean-field approximation shares both of these effects

it lies somewhere between the two, depending on the settingsof the parameters. This means that
whilst approximation 3 under-estimates the observation noise, and approximation 2 over-estimates
it, the loosest approximation of the three, the mean field approximation, can actually provide the
best estimate, as its peak lies in between the two. The purpose of the next section is to characterise
the parameter regime over which this occurs.

In contrast to the situation with the dynamical parameter, the zero-temperature EM objective behaves
catastrophically as a function of the observation noise,σ2

y . This is caused by a narrow spike in the
likelihood-surface atσ2

y = 0. At this point the latent variables arrange themselves to explain the data
perfectly, and so there is no likelihood penalty (of the sort− 1

2σ2
y
(yt − x1,t − x2,t)

2). In turn, this

means the noise variance can be shrunk to zero which maximises the remaining terms (∝ − log σ2
y).

The small cost picked up from violating the prior-dynamics is no match for this infinity.

This is not a very useful solution from either the perspective of learning or inference. It is a patho-
logical example of overfitting3: There is an infinitesimal region of the likelihood-posterior surface
with an infinite peak. By integrating over the latent variables, in a variational method for example,
the problem vanishes as the peak has negligible mass and so makes only a small contribution. So,
although variational methods often do not preserve as much uncertainty information as we would
like, and are often biased, by recovering means and not modesthey provide better joint estimates
than the catastrophic zero-temperature EM approach.

Learning the dynamical noiseσ2
x with the other parameters fixed at their true values results in a very

similar situation: approximation 2 under-estimatesσ2
x, and approximation 3 over-estimates it, while

the mean-field approximation returns a value in between. Once again the MAP solution suffers from
an overfitting problem whereby the inferred value ofσ2

x is driven to zero.

Characterising the space of solutions
In the previous section we found that for a particular setting of the true/ML parameter, the mean-
field approximation was the most unbiased (see Fig.1). How typical is this scenario? One way of
answering this question is to evaluate the bias in the parameters learned using the four approxima-
tion schemes for many different data-sets each with different maximum-likelihood parameters. In
practice three methods are used to find the optimal settings of the parameters. The first is to perform
a grid based search, the second is to perform direct gradientascent on the free-energy and the third
is to run vEM. All three methods return identical results up to experimental error.

As a typical example, we show the bias in inferringλ for many different maximum-likelihood set-
tings of σ2

y andλ in Fig. 2A. In each caseσ2
x was set to the ML value, which was close to the

3This is the SSM analogue to Mackay’s so-called KABOOM! problem in soft K-means [4]
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Figure 2: A. Biases for infering a single parameter as a function of σ2
y andλ. For all pointsσ2

x =

1 − λ2. Bias is defined as∆Θ = ΘINF − ΘML so that over-estimation results in a positive bias.
Columns correspond to the four approximations. Top Row: Bias in λ. Bottom Row: Bias inσ2

y .B.
The best approximation for findingσ2

y indicated by color (q1 red,q2 blue andq3 magenta). The black
solid line isr = σ2

x/|λ|σ2
y = 1 and below it approximation 3 is tightest, and above it approximation

2 is tightest.

true value of1 − λ2. The parameter is under-estimated in all cases, often by a substantial amount
(e.g. for approximations 1,3, and 4, at highσ2

y andλ values, the bias is almost one). The bias from
using approximation 2 is always smaller than that from usingthe others, and it is to be preferred
everywhere. However, this does not generalise for other parameters. The bias for inferringσ2

y is
shown in Fig.2B. As noted in the previous section, approximation 2 over-estimates the observation
noise, whilst approximation 3 and 4 under-estimate it. The mean-field approximation combines the
behaviours of approximation 2 and 3 and therefore under-estimates in regions whereλ andσ2

y are
small, and over-estimates in regions where they are large. In the intermediate region, these effects
cancel and this is the region in which the mean-field approximation is the best. This is shown in
Fig. 2C which indicates the best approximation to use for inferring the observation noise at different
parts of the space. The mean-field solution is to be preferredover a fairly large part of the space.

Which is the best approximation therefore depends not only on which parameter has to be learned,
but also on the ML value of parameters.

Simultaneous inference of pairs of parameters
So far we have considered estimating a single parameter keeping the others at their true values. What
happens when we infer pairs of parameters at once? Consider,for instance, inferring the dynamical
parameterλ and the observation noiseσ2

y with σ2
x held at its ML/true value (see Fig.3). As before,

three methods are used to find the optimal parameter settings(gridding, gradient ascent and vEM).
In a small minority of cases the objective functions are multi-modal, in which case the agreement
between the methods depends on the initialisation. In orderto avoid this ambiguity, the gradient
based methods were initialised at the values returned from the method of gridding the space. This
procedure located the global optima. The most striking feature of Fig.3A. is that the biases are often
very large (even in regimes where the structural approximations are at their tightest). Moreover,
as there is a many to one mapping between the true parameters and the inferred parameters this
indicates that it is impossible to simply correct for the variational bias by looking at the inferences.

Fig. 3B. shows that, in contrast to the case where only one parameter is inferred at a time, the mean-
field solution is no-longer superior to the structural approximations. It also indicates that whilst
tightness is a guide for choosing the best approximation, itis not very accurate. It is also notable
that when all three parameters are inferred together (data not shown), the biases become even larger.

Finally, we consider the relevance of this toy example, and in particular what happens in longer
time-series (T > 2) with more hidden variables (K > 2). In general both of these changes result
in posterior distributions that have richer correlationalstructure. (That is, the posterior covariance
matrix has more off-diagonal terms.) The variational approximations thus ignore larger parts of this
structure and therefore the KL terms and associated biases will become correspondingly larger.
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Figure 3: Simultaneous inference ofλ and σ2
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below it approximation 3 is tightest, and above it approximation 2 is tightest.

4 Conclusion

We have discussed two problems in the application of vEM to time-series models. First, the
compactness property of variational inference leads to a failure to propagate posterior uncertainty
through time. Second, the dependence of the variational lower bound on the model parameters often
leads to strong biases in parameter estimates. We found thatthe relative bias of different approxi-
mations depended not only on which parameter was sought, butalso on its true value. Moreover,
tightest bound did not always yield the smallest bias: in some cases, structured approximations were
more biased than the mean-field approach. Variational methods did, however, avoid the over fitting
problem which plagues MAP estimation. Despite these shortcomings, variational methods remain a
valid, efficient alternative to computationally costly Markov Chain Monte Carlo methods. However,
the choice of the variational distribution should be complemented with an analysis of the depen-
dency of the variational bound on the model parameters. Hopefully, these examples will inspire new
algorithms that pool different variational approximations in order to achieve better performance.
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