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Abstract

Variational methods are a key component of the approxinmégeeénce and learn-
ing toolbox. These methods fill an important middle grouredaining distribu-
tional information about uncertainty in latent variables)ike maximum a pos-
teriori methods (MAP), and yet requiring fewer computational reses than
Monte Carlo Markov Chain methods. In particular the vadaél Expectation
Maximisation (vEM) and variational Bayes algorithms, bistvolving variational
optimisation of a free energy, are widely used in time-senmdelling. Here, we
investigate the success of VEM in simple probabilistic tiseeies models. First
we consider the inference step of VEM, and show that a corsegLof the well-
known compactness property is a failure to propagate uaiogytin time, thus
limiting the usefulness of the retained distributionabirrhation. In particular, the
uncertainty may appear to be smallest precisely when theo&jppation is poor-
est. Second, we consider parameter learning and analytiesleal systematic
biases in the parameters found by VEM. Surprisingly, simydeiational approxi-
mations (such a mean-field) can lead to less bias than morglwated structured
approximations.

1 Thevariational approach

We begin with a very brief review of VEM. The Expectation-Niaisation (EM) algorithm ]

is a standard approach to finding maximum likelihood (ML)graeters for latent variable models,
including hidden Markov Models and linear or non-lineatstgpace models (SSMs) for time-series.
The algorithm can be re-formulated as a variational opttnis of a free-energy?] 3]. Consider
observations collected into a S€f that depend on latent variabl&sand parameters. We seek to
maximiselog p(Y'|#) with respect t&. By introducing a new distribution over the latent variable
q(X), we can write

logp(Y]0) = log/dX p(Y, X10) = 1og/dX p(Y’,X|9)%7 (1)
p(Y, X[0)
> / 4 a(X)log P = Flq(x).0) @)

This last quantity is the free energy. It is smaller than thg-likelihood by an amount equal to
the Kullback-Leibler (KL) divergence betweeriX') and the posterior distribution on the latents
p(X[Y,0)

F(q(X),0) =logp(Y]0) — KL(¢(X)||p(XY,0)), 3)

For fixed, the optimum value fog is clearly equal to(X |Y, 6), at which point the KL divergence
vanishes and the free energy equals the log-likelihood. sThliernate maximisation af (g, 9)



with respect toy (the E-step) and (the M-step) will eventually find parameters that maximise t
likelihood.

In many models, calculation of this posterior is intracéabTlhus, the vVEM approach is to instead
optimiseq restricted to a class of distributiorg®, within which the minimum of the KL divergence
can tractably be found. The optimgls called the variational approximation to the posteriaon€
strained optimisation of now alternates with optimisation ¢f to find a maximum of the free
energy, though not necessarily the likelihood. The optipahmeters are taken to approximate the
ML values.

Most often, the clas® is defined to contain all distributions that factor over diisf setsC; of the
latent variables in the problem(X) = HZ-I:1 qi(z¢,). For example, if each latent variable appears
in a factor of it own, the approximation is calletean-field Partial factorisations, which keep some
of the dependencies between variables are calletttured approximationdn both cases the;’s

are found iteratively, by repeating the following updates,

q(x;) o< exp (<1ng(Y, X|6‘)>H#i qi(mcj)) ' @

Here, we analyse the accuracy of VEM in two stages. We firdt ktathe relationship between
the true posterior distribution and the variational apfpmation. It is well known that variational
methods tend to be compacf[ For instance, a unimodal variational approximation to @altin
modal distribution will match the largest modg,[ rather than averaging across all of them, and
a spherical Gaussian variational approximation will mateh shortest length-scale of a correlated
Gaussian. We show that this compactness results in a canfplitre to propagate uncertainty be-
tween time-steps, often making the variational approxiomatnost over-confident exactly when it
is poorest. We then consider the accuracy of the VEM pararastienates. As the variational bound
on the likelihood is parameter dependent, variational weghcan be biased away from peaks in
the likelihood, toward regimes where the bound in tightes. @result, the best approximations for
learning are not necessarily the tightest, but rather thwesteresult in bounds which depend least on
the parameters. Both of these properties are exemplifiedyssinple time-series models, although
the conclusions are likely to apply more generally.

2 Variational approximations do not propagate uncertainty

Fully factored variational approximations (so called mdafd approximations) have been used for
inference in time-series models as they are fast and yetedilrn estimates of uncertainty in the
latent variables(]]. Here, we show that in a simple model, the variational tierss fail to propagate
uncertainty between the factors, rendering these estsyadtancertainty particularly inaccurate in
time-series (see’] for a related example).

We consider a time-series model with a single latent vagiablat each time-step drawn from an
AR(1) prior with coefficient\ and innovations varianae?,

p(x¢|x_1) = Norm(Ax;_q,07). (5)

The marginal mean of this distribution is zero and the mapiariance isr2, = % Typically

the latent variables are assumed carry strong temporatlations, so thad is close to 1. We
consider arbitrary instantaneous likelihood functign(s:|z: ). Using an approximating distribution
which is factored overtime(x.7) = Hthl q(x;), the update for the latent variable at timfellows
from Eq.4,

1
q(xe) = —p(yelze) exp({log plzelze—1)p(Tes1]e) (e 1)ateein): (6)
1 A o2 1
= ZiPWew)Norm == ((e-1) + (@e41)) s 7553 ) = P Welwe)prion(20)- - (7)
! fact the effective time-scale of Egjis 7.;; = —1/log()\) and so a change i from 0.9 to 0.99

is roughly equivalent to a change frobm99 to 0.999. This is important when the size of the biases in the
estimation of\ are considered.



That is, the variational update is formed by combining thellhood with a variational prior-
predictiveg,ior (z¢) that contains the contributions from the latent variabletha adjacent time-
steps. This variational prior-predictive is interestireghuse it is identical to the true prior-predictive
when there is no uncertainty in the adjacent variables. Bhabneof the (potentially large) uncer-
tainty in the value of the adjacent latent variables is pgaped tog(z), and the width of the varia-
tional predictive is consequently narrower than the widtstate-conditional distributiop(x; |2;—1)
(compare to Eg5).

Temporally factored variational methods for time-seriesdels will thus generally recover an ap-
proximation to the posterior which is narrower than theestadnditional distribution. As the whole
point of time-series models is that there are meaningfubddpncies in the latents, and therefore the
state-conditional often has a small width, the variatiamadertainties may be tiny compared to the
true marginal probabilities. Thus, the mean-field apprasdentially reduces to iterative MAP-like
inference, except that we find the mean of the posterior réitla@ a mode. In the next section, it will
be shown that this does have some advantages over the MABaappmotably that pathological
spikes in the likelihood can be avoided.

In conclusion, although variational methods appear tametame information about uncertainty,
they fail to propagate this information between variablesparticular, in time-series with strong
correlations between latents at adjacent times, the vamatposterior becomes extremely concen-
trated, even though it is least accurate. An ideal distidimatl approximation would perhaps behave
in the opposite fashion, returning larger uncertainty wheéslikely to be more inaccurate.

3 Variational approximations are biased

In the last section we showed that variational approxinmastiender-estimate the uncertainties in in-
ference. We now ask how these inaccuracies might affectarenpeter estimates returned by VEM.
This question is important in many contexts. For exampliergific enquiry is often concerned with
the values of a parameter, to substantiate claims like fabsgenes vary slowly” or “natural sounds
are sparse”, for instance.

What makes for a good variational approximation in this @aEke instant reaction is that the free-
energy should be as close to the likelihood as possible. iSH&L(q(X)||p(X|Y, 0)) should be as
small as possible for alk. However, from the perspective of learning it is more impattto be
equally tight everywherer in other words it is more important for the KL-term to bepgsameter-
independent as possible: WL(¢(X)|p(X]Y, #)) varies strongly as a function of the parameters,
this can shift the peaks in the free-energy away from the paathe likelihood, toward the regions
were the bound is tighter. (Seé for a related example for variational Bayes in mixture misde

We now illustrate this effect in a linear SSM. In particulae show that the mean-field approxima-
tion can actually have less severe parameter-dependesashihian two structural approximations,
and can therefore lead to better vEM parameter estimaten,tbough it is less tight everywhere.

Deriving thelearning algorithms

In the following we first introduce an elementary SSM, for atiwe can find the exact likeli-
hood (ogp(y|6)). We then examine the properties of a set of different vinet learning algo-
rithms. This set comprises a mean-field approximation, tifferént structural approximations, and
zero-temperature EM. This final approximation can be thoofijas vVEM where the approximating
distributions are delta functions centred on thaximum a posteriofMAP) estimatesJ]. The
analysis of these schemes proceeds as follows: First th@aldE-Step updates for these approxi-
mations are derived; Second, it is shown that, as the SSMimm@eone, the free-energies and the
zero-temperature EM objective function can be written puire terms of the parameters. That is,
maxg(,) F(0, ¢(x)) andmaxx logp(Y, X|6) have closed form solutions, and do not require itera-
tive updates to be computed as is usual. Thus, we can studgldi®nship between the peaks in
the likelihood and the peaks in the free-energies and zmrgpérature EM objective function, for
any dataset. An outline of the derivation of these quastiSegiven here, but for more detail see the
associated technical repo#][

2This problem only gets worse if the prior dynamics have lordgpendencies, e 9. ixe|xe—1:0—7) =
Norm(3}"},_, Avz—, 0°) then the variational prior-predictive has a vanamf‘gT—

t/lt/



Consider an SSM which has two latent variables per time-ateptwo time-steps. We take the
priors on the latent variables to be linear-Gaussian, aadbservations are given by summing the
latents at the corresponding time-step and adding Gaussiaa,

o2
p(zk,1) = Norm <O, ﬁ) , (8)
p(zk,2]Tk,1) = Norm (/\Ik,l, 05) , (9)
p(Yt|T1,4, 2,1) = Norm(zqy + 22, 05). (20)

This defines a joint Gaussian over the observations anct leéeiables. From this we can compute
the likelihood exactly by marginalising,

2
1 A
o lf) =Norm(0.3y), Sy =12 +2.20 | 17 . 1)

The posterior distribution over the latent variables ioaBaussian, and is given by(x|y) =
Norm(fix|y, Xx|y), Wherex = [211, 221, 212, r22]7. The covariance and mean are

1 1 1 A
=tz =) -5z 0
_ z wtez 0 = 1 n
Y, v T a: _
EX|Y _A 0 141 1 o Mxly = 5 xly e | (12)
o2 0'5 o2 05 Uy
0 2 ST T Y2
o2 05 05 o2

The posterior is correlated through time because of thatiiaussian prior, and correlated across
chains because of explaining away. The correlations thrdinge increase as the prior becomes
slower (| increases) and less noisy(decreases). The correlations across chains increase as the
observation noisen@ decreases.

We now derive the optimal E-Step for four different approations: The first three approximations
provide uncertainty estimates and these are the fully fadtonean-field approximation(), fac-
torisation over chains but not times, and factorisation over time but not chaing)( as shown
in the following table: The optimal E-Step updates for thésee distributions can be found by

factored over time unfactored over time
factored over Cham_@l (x) = qui(z1)qr2(z12)q13(x21)qra(z22)  q2(x) = go1(z11, T12)g22(T21, T22)
unfactored over chains qs3 (X) = Q31(I11, $21)Q32 (SC12, IQQ) p(X|Y) = q(xll, 12,221, .CCQQ)

minimising the variational KL. Each factor is found to be Gsian, with a mean and precision that
match the corresponding elementsyip, and 2;|1y. The fourth and final approximation is zero-
temperature EM(), for which the E-Step is given by the MAP estimate for thedtvariables.

As the posterior is Gaussian, the mode and the mean areddkeatid so the MAP estimates are
identical to the variational values for the means.

The next step is to compute the free-energies. In the firsetbases, the Gaussianity of the posterior
as well asyy, ¢2, andgs makes it possible to compute the KL divergences analyyicall

A s
KL; <H Gia (Xa)llp(XIy)> 3 los = ‘“’ (13)
a=1 Xy
Using this expression we find,
1 (02—1—02)4 1 ((‘72+02)2_/\204)2
KLy = 5 log ~Y— " KL; = ; log ~— -, (14)
2 oy 2 oy
2 2)2
+2
andKL; — l1og M, (15)
v
wherey = (1-X?) (203 4 07)* — ) In the fourth approximation, thi€L divergence between

a Gaussian and a delta funct|on is infinite. Thereforeheerm is discarded for zero-temperature
EM and the log-joint is used as a pseudo-free energy.
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Figure 1: Biases in the Free-energies for a simple lineaadynal system. True/ML parameters are
A=0.9,07 =1- X =0.19,ands; = 0.43. In each case one parameter is learned and the others

are set to their true/ML values. A. learning B. Iearningag. Large panels show the uncertainty
preserving methodsgy{.3). Small panels show the zero-temperature EM approggh The bottom
two panels show a zoomed in region of the top two panels.

General propertiesof the bounds: A sanity check

We now verify that these results match our intuitions. Foaraple, as the mean field approxi-
mation is a subclass of the other approximations, @lisaysthe loosest of the boundklL; >
KL, KLs > 0. Furthermore, approximation 3 (factorising over time) dmes looser than ap-
proximation 2 (which does not) when temporal correlatioosithate over the correlations between

2
chains. This is indeed the caselaks; > KL, whenr = ‘ﬁ# < 1. Moreover, approximation
Yy

2 (which factorises over chains) is equivalent to the medd épproximationKL; = KLs, when
there are no temporal correlations= 0 or o2 = oo, and in this case the true posterior matches ap-
proximation 3,KL3s = 0. Similarly, approximation 3 is equivalent to the mean-fiafgbroximation
when the observation noise is infin'mz = oo, and here approximation 2 is exd€t.. = 0.

We can now consider how the maxima in the likelihood relatdhe®omaxima in the Free-energies.
Unfortunately, there is no closed form solution for theseime, but in the simple examples which
follow, the free-energies and likelihoods can be visudlida general, we use as our data-set a large
number of samples drawn from the forward mod¥l & 10000) and in all cases the ML parameters
are essentially equal to the true parameters.

The model has a total of three parameters. We first considenileg just one of these parameters
and set the others to the true/ML value. This will allow us évelop some intuition about the ways
in which different approximations lead to different biaseshe parameter estimates. In this case,
the likelihood and free-energies are easy to visualise;estypical examples are shown in Fif.

We then consider how the bias changes as a function of thAvituparameters, and observe that
there is no universally preferred approximation, but indtéhe least biased approximation depends
on the parameter that is being learned and on the value ofubéML parameters. Finally, in we
will study the bias when learning the dynamic parameter ardbservation noise simultaneously.

L earning the dynamical parameter, A

We begin by considering learning with the other parameters fixed. As the magnitude of the
dynamical parameter increases, so does the correlatidmeipadsterior between successive latent
variables in the same chain, thatig; andx; 2. This means the factorisation over time results
in looser bounds as the magnitude dfincreases L3 increases, Eq3). Furthermore, as the



correlation between latents in the same chain increasgs, &nd z; 2), so does the correlation
betweenz;; andxs, (propagated by the explaining away). This means, somewlhgtisingly, that
the approximation which does not factorise over time, birahains, also becomes looser as the
magnitude of\ increases. That i L, increases with the magnitude af Due to the fact that
both bounds become less tight agncreases, the free-energies peak at lower valuestbfin the
likelihood does, and therefore yield under-estimates [s€jfor a similar result).

The mean-field approximation suffers from both of the afagationed effects, and it is therefore
looser than both. However, with regard to their dependemcg,d<L; andKL;3 are equivalent.
This means that the mean field approximation and the appatiomthat factors over time recover
identical values for the dynamical parameter, even thotghfarmer is looser. Curiously, the so-
lution from zero-temperature EM is alsdentical to the mean-field;() and temporally factored
(¢3) solutions One of the conclusions to draw from this is that most sevppeaimation need not
necessarily yield the most biased parameter estimates.

L earning the observation noise, o , and the dynamical noise, 02

Next we consider Iearnln@ Wlth the other parameters fixed to their true values. Duefibaén-

ing away, decreasmg the observanon noise increases theatmn between variables at the same
time step, i.e., between;; andxy,. This means that the approximation that factors over chains
becomes worse as,3 decreases, and therefdfé.. is an increasing function (mfj . In contrast, the
approximation that factorises over time, but not over chabecomes tighter asj decreases i.e.
KLs is a decreasing function of2. As the mean-field approximation shares both of these sffect
it lies somewhere between the two, depending on the settihtiee parameters. This means that
whilst approximation 3 under-estimates the observatidesen@nd approximation 2 over-estimates
it, the loosest approximation of the three, the mean field@pmation, can actually provide the
best estimate, as its peak lies in between the two. The peigfdbe next section is to characterise
the parameter regime over which this occurs.

In contrast to the situation with the dynamical parameler ziero-temperature EM objective behaves
catastrophically as a function of the observation nm%e This is caused by a narrow spike in the

likelihood-surface adr2 = 0. At this point the latent variables arrange themselves jegr the data
perfectly, and so there is no likelihood penalty (of the sogto_—(yt — x14 — T24)?). Inturn, this

means the noise variance can be shrunk to zero which madttiegemaining termsq( — log 05).
The small cost picked up from violating the prior-dynami&®o match for this infinity.

This is not a very useful solution from either the perspextlearning or inference. It is a patho-
logical example of overfitting There is an infinitesimal region of the likelihood-postersurface
with an infinite peak. By integrating over the latent varedlin a variational method for example,
the problem vanishes as the peak has negligible mass andk&s mialy a small contribution. So,
although variational methods often do not preserve as macbkrtainty information as we would
like, and are often biased, by recovering means and not mbegsprovide better joint estimates
than the catastrophic zero-temperature EM approach.

Learning the dynamical noise’ with the other parameters fixed at their true values resulsvery
similar situation: approximation 2 under-estimat@s and approximation 3 over-estimates it, while
the mean-field approximation returns a value in betweeneQ@ugain the MAP solution suffers from
an overfitting problem whereby the inferred valuesdfis driven to zero.

Characterising the space of solutions

In the previous section we found that for a particular sgtifi the true/ML parameter, the mean-
field approximation was the most unbiased (see EigHow typical is this scenario? One way of
answering this question is to evaluate the bias in the pammkearned using the four approxima-
tion schemes for many different data-sets each with diffem@aximum-likelihood parameters. In

practice three methods are used to find the optimal settihpeparameters. The first is to perform
a grid based search, the second is to perform direct gradgseint on the free-energy and the third
is to run VEM. All three methods return identical results agkperimental error.

As a typical example, we show the bias in inferrindor many different maximum-likelihood set-
tings ofcrj and ) in Fig. 2A. In each case? was set to the ML value, which was close to the

3This is the SSM analogue to Mackay’s so-called KABOOM! pewblin soft K-means/]
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Figure 2: A. Biases for infering a single parameter as a fionabf o— and\. For all pointso? =

1 — \2. Bias is defined ad® = O;nxr — O, SO that over-estlmatlon results in a positive bias.
Columns correspond to the four approximations. Top RowsHRia\. Bottom Row: Bias |rtr2 B.

The best approximation forﬁndrrtgf, indicated by colorq; red,q> blue andj3 magenta). The black

solid line isr = 02/|/\|a = 1 and below it approximation 3 is tightest, and above it appnaion
2 is tightest.

true value ofl — \2. The parameter is under-estimated in all cases, often bpstantial amount
(e.g. for approximations 1,3, and 4, at highand values, the bias is almost one). The bias from
using approximation 2 is always smaller than that from ushegothers, and it is to be preferred
everywhere. However, this does not generalise for othearpaters. The bias for mfernn@u is
shown in Fig.2B. As noted in the previous section, approximation 2 ovéirresies the observation
noise, whilst approximation 3 and 4 under-estimate it. Tleamfield approximation combines the
behaviours of approximation 2 and 3 and therefore undémeagts in regions wherg ando—g are
small, and over-estimates in regions where they are lamgéhd intermediate region, these effects
cancel and this is the region in which the mean-field apprasion is the best. This is shown in
Fig. 2C which indicates the best approximation to use for infertime observation noise at different
parts of the space. The mean-field solution is to be prefaveda fairly large part of the space.

Which is the best approximation therefore depends not onlywlbich parameter has to be learned,
but also on the ML value of parameters.

Simultaneous inference of pairs of parameters

So far we have considered estimating a single parameteirigetye others at their true values. What
happens when we infer pairs of parameters at once? Confiderstance, inferring the dynamical
parametei and the observation nois€ with o2 held at its ML/true value (see Fig). As before,
three methods are used to find the optimal parameter seftniglsling, gradient ascent and vVEM).
In a small minority of cases the objective functions are malbdal, in which case the agreement
between the methods depends on the initialisation. In aalewoid this ambiguity, the gradient
based methods were initialised at the values returned fhenmtethod of gridding the space. This
procedure located the global optima. The most strikingufiesadf Fig.3A. is that the biases are often
very large (even in regimes where the structural approxonatare at their tightest). Moreover,
as there is a many to one mapping between the true parametkitha inferred parameters this
indicates that it is impossible to simply correct for theigtional bias by looking at the inferences.

Fig. 3B. shows that, in contrast to the case where only one paraisétderred at a time, the mean-
field solution is no-longer superior to the structural apgmmations. It also indicates that whilst
tightness is a guide for choosing the best approximatiois, riot very accurate. It is also notable
that when all three parameters are inferred together (datshown), the biases become even larger.

Finally, we consider the relevance of this toy example, angarticular what happens in longer

time-series{" > 2) with more hidden variables{ > 2). In general both of these changes result
in posterior distributions that have richer correlatioglicture. (That is, the posterior covariance
matrix has more off-diagonal terms.) The variational apprations thus ignore larger parts of this

structure and therefore the KL terms and associated biafldseaome correspondingly larger.
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Figure 3: Simultaneous inference afand 03 with biases shown as a function of the true/ML
settings of the parameters. A. For each approximatien)(a number of simulations are run and
each is represented by an arrow. The arrow begins at thettugétting of the parameters and the
tip ends at the inferred value. Ideally the arrows would by ghort, but in fact they are often very
large. B. The best uncertainty preserving approximatign ) for finding A (Top) anda§ (Bottom)

indicated by color 4, red, ¢, blue andys magenta). The black solid line is= ¢2/|\|o7 = 1 and
below it approximation 3 is tightest, and above it approxiora? is tightest.

4 Conclusion

We have discussed two problems in the application of VEM toetseries models. First, the
compactness property of variational inference leads tdlaréato propagate posterior uncertainty
through time. Second, the dependence of the variationarlbaund on the model parameters often
leads to strong biases in parameter estimates. We founththaelative bias of different approxi-
mations depended not only on which parameter was soughgléaiton its true value. Moreover,
tightest bound did not always yield the smallest bias: inescases, structured approximations were
more biased than the mean-field approach. Variational ndstda, however, avoid the over fitting
problem which plagues MAP estimation. Despite these shoriiegs, variational methods remain a
valid, efficient alternative to computationally costly Ndaw Chain Monte Carlo methods. However,
the choice of the variational distribution should be compdated with an analysis of the depen-
dency of the variational bound on the model parameters. fddpghese examples will inspire new
algorithms that pool different variational approximatsan order to achieve better performance.
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