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Abstract

This is the technical report for the paper “Biases in Vaoiadil Learning”. It fills

in some of the technical steps and contributes a couple fafrdift examples. It
shouldnot be read in isolation as it does not include all of the examplehe

paper and there is little in the way of explanation especiafl the high level

points.

1 Factored Gaussian Variational Approximations

We will often find ourselves minimizing the KL between a faeth Gaussian and a correlated Gaus-
sian. That s,
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KL(g(x)|p(x)) = ~3 I;log op + 3 logdet X" + 5‘51" (E Em) , (1)
Mg = <(X - N)(x - N)T>q(x) . (2)
Optimising this for the means;, and then the variances gives us the following optimal settings,
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That is, the mean and precisions (diagonal of the inversar@we matrix) of the approximating
distribution match the mean and precisions of the trueidigion.

2 Examples of Compactness

2.1 Compactnessin continuous models

As a warm-up, we consider a simple illustration of the utilif the result from the last section.
(This is a variant on Mackay, 2003 page 434). Consider a m@an two-dimensional Gaussian
distribution with axes oriented in the directioas = [1, 1] andes = [1, —1] with variancesr? and

5 .
o5 . Thatis,

1 1
Y= §ofe1e1T + §o§,e2e1T. (4)

Inverting this matrix, the variational updates are,
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The approximating distribution is spherical. If the vadarof the two components is very different,
sayo? >> o3 then the width of the approximating distribution becomes, and therefore inde-
pendent of the longer length-scale. In this sense the appation is becoming compact, matching
the smallest length scale structure in the posterior.
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Figure 1: Temporally factored variational approximatiam & linear dynamical system. As the
slowness of the distribution increases, the variationpt@xmation narrows, but the marginal vari-
ance is fixed. Notice the variational ellipse intersectgthsterior ellipse on the axes indicating the
variational distribution has the width of the condition&tdbution.

One common situation where this effect is important arisesmwe factorise over strongly coupled
variables and this is fairly routine for linear dynamicas®ms. By way of example, imagine we
have the following AR(1) distribution,

p(z¢|zi—1) = Norm(Azy_1,0%). (6)
The marginal mean of this system is zero and the marginsnes;,
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Consider then the joint distribution,

p(xtfl, It) = P(It|$t71)p($t71)a (8)
p(z¢+—1) = Norm(0, 0(2)0). (9)

This is a Gaussian distribution with zero mean and covaeéanc
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Let's approximate this using a factored variational appr@tion and use the results above to cal-
culate the variational updates. Clealy this will cause fwis as the latent variables are strongly

correlated across time. In fact the example is exactly idahto the previous one, but! = %

ando3 = 1‘1—1
So we can use the result directly and the variational appration is,
g(x¢) = Norm(0, 0?), (12)
q(z¢_1) = Norm(0, o%). (12)

That s, the distribution ovet;, is exactly the same as if we hidown the latent variable the previous
time step to be zern,_; = 0. None of the uncertainty in the value of the previous latent hasbee
folded in.
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In fact the ratio of the variance of the variational approation to the true variance gz = 1 — 2.

Ttrue

Typically for LDS where the dynamics are slow, ide= 1 — A andA is a small quantity (e.g0~"-
1073). The ratio of the variance of the approximating distribatio the truth isx 2A (meaning
that the approximation is for examp)% to 0.2% of the true variance).

2.2 Compactnessin Discrete Models

Imagine a binary Markov Model which is symmetric, with slownémics,

e =3[ 1] (13)
1-A A }

p(walr1) = { A 1-A (14)



So the system tends to stay in the same state (probabilit\) rather than switching (probability
A). The joint is simply,
1/1-A A
p(xl,xg)zi[ A 1-A ] (15)

We make a fully factored approximation to this distributiptc1, z2) = g(z1)g(x2). This approx-
imation is bound to fail catastrophically as we are apprating an asymmetric distribution with a
symmetric one. As we shall see, the resulting distributiocompact. Defining(z; = 1) = p;, the
KLis,

KL(q(z1, z2)|[p(z1,22)) =
1 1 1 1
—pip2log S(1=A) = (1= pi)pzlog SA = pi(l = p2)log A — (1= p1)(1 = p2)log 5 (1 = A)

+ p1log p1 + (1 — p1)log(l — p1) + p2log p2 + (1 — p2) log(1 — p2). (16)
The variational distribution is,
1
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So if there are strong temporal correlations so that- 0 then there is symmetry breaking and
p1 — 1 orp; — 0so the approximate joint is either
0 0 1 0
q(z1,x2) — [ 0 1 } , or q(z1,xz2) — { 0 0 } . (18)

Both of which are compact versions of the posterior, and ddaid in the uncertainty i1 : just as
was the case for the previous example with a linear dynarsjcsém.

p1 = pP1 = pP2- (17)

3 Biasesin Variational Parameter Learning

3.1 Biasesfor Gaussian Linear Dynamical Systems

Here we provide some more details on the derivation of thefgisults for the LDS. The LDS under
consideration is,

o
p(zk,1) = Norm (0, m) , (29)
p(zk,2) = Norm (/\‘TkJ,O'i) , (20)
p(ye|@1e, w21) = Norm(w1s + o, 03). (21)

The joint Gaussian over the observations and latent vasabltherefore Gaussian. The likelihood
2
of the parameters is formed by marginalising, using= =1, + z2¢ + oy€, (27,) = 795z and

2
(Tr17R2) = %,

p(ylv y2|9) = NOI‘Hl(O, ZY)? (22)
2
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This means the likelihood a¥ observations of the time series is,
N
N 41 T
logp(Y']0) = 5 <10g det 273, + tr <Ey N ngl YnY,, )) (24)

Next we form the posterior distribution over the latent ghtes is also Gaussian. It can be derived
by first finding the joint,
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(25)



The posterior is simply derived from the joint by picking tifiie functional dependence on theg
which is Gaussian. A symbolic package can be used to invextdiresponding inverse-covariance
matrix and find the mean. Defining= [x11, 221, 712, 220]7, it is given by,

p(X|y) = Norm(ﬂx|y7 Ex|y)- (26)
Where the inverse-covariance and mean are given by,
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(28)

We now consider three different variational approximagiofhe fully factored mean-field approxi-
mation, fatorisation over time, and factorisation overioba

unfactored over chains factored over chains
unfactored overtime  p(x|y) = g(z11, z12, T21, ¥22) q2(x) = q21(211, T12)q22(T21, ¥22)
factored overtime  ¢3(x) = g31(@11, %21)g32(12, T22)  q1(X) = qu1(z1)qi2(x2)q13(x3)q1a(z4)

The optimal updates for these distributions can be found ioymising the variational KL (Eq??).
The solution is that each factor is Gaussians with a mean i@wilspn that matches the correspond-
ing elements inu, and E;ﬁy (see section 1). Furthermore, as the approximations arnenmms
distributions are all Gaussians, it is possible to comphaddL divergences between them using the
relationship in Eq. 2. As the approximating distributioravé been found by minimizing the KL,
things simplify to leave,

A
1 1
KL; <,11:[1 Gia(Xa)| |p(x|y)> =3 log det Xy )y, — B ; log det Xjq. (29)
Which is the log of the ratio between the volume of the truetgrigr and the volume of the ap-
proximation. As the KL-divergence is positive, the volunféte approximation is always smaller
than the volume of the true posterior, which is our friends dompactness property. Using this
expression we find,

KLi=—-log~¥% %/ 30
2 2 2.4
1 (cr + am) — Mo
KL, = - log (G - ) (31)
2 Ty
2 4 942 2
KLy — L1og 7 272) (32)
2 Y
where
v=(1=X) (@202 +0.)* = \oy) (33)

These results are easily checked using a symbolic mathagack

For completeness we check everything using EM and the Etfteates have essentially been given
(matching means and correponding precisions) The M-Steptes are,

A= —2 +sign(a)y /1 + a_lg’ = 0_2 Z ( 551711 5512 <xé’f)x$))) (34)
n=1
R )2 m\? (n)
T = IN ;( (5511) <(5C21) >+<($12) >+<(~T22) )
—_ 9\ (<x1711)x(721)> (@Y (n)>)> (35)
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Finally we derive the MAP estimate of the latent variables tAe log-joint (Eq. 25) is quadratic
in the latent variables, the derivatives with respect toldéitent variables yield the following linear
updates,

Igz:l-ﬁ-l) 0 —o? /\03 0 xﬁ) Y1
argzl-&-l) B 1 -02 0 0 )\05 :cgll) o2 Y1 37
20D | T g2 402 | Aoy 0 0 —o3 2\ * o2+02 | Y2 37)
L0HD) ‘ 0 Xop -0 O O] L

22 22

Defining x'*1 = Wx! + ~, the optimal value for the latents is given by the eigenveatith
eigenvalue one, of the matrix,

M_[g'ﬂ (38)

This can be computed using a sybolic maths package, andltht@®sas,

(202 + Ué)yl + /\aéyQ
2035 +o)y + AO'ng

a2
7 @ﬁ+#m+Mw1 (39)
(

202 + U%)yg + Aoy

WhereZ = 40, — X0, + 40307 + 0,,. Notice this has the symmetry properties we would expect:
11 = xo1 aNdxkl (y1,y2) = Tr2(y2, y1). Unsurprisingly this is identical to the variational upetsit
for the means as the posterior is Gaussian and, as such, theeand the mean are in the same place.
These results can be substituted into the log-joint enghigto evaluate the MAP-objective purely
as a function of the parameters.

3.2 Biasesfor learning weightsin factor analysis (or factorising over timein LDSSMs)

The results from the previous section seem to indicate #t&bfising over chains is a better approach
than factorising over time in LDSSMs. This is because thalsgime in which to use time-series
models is where the observation noist%)(is large and the dynamics are strong (~ 0 and

|A| & 1). In this regimey, did rather better thag; as the dynamical information is critical.

However, the above example had fixed generative weights aedlimnensional observationg (=
x1t + z2t). We now consider what happens when you factorise over shaithe case where you
are learning the weights. As explaining away is neglectednulising an approximation which is
factored across chains, and as a proper treatment of exggadmvay is required to estimate the
weights correctly, we might expect to see a severe bias.

Although we could consider a time-series model, it is simpbeconsider a factor analysis (FA)
model. The results will clearly generalise to time-seriBise chain-factored approximation for lin-
ear Gaussian state-space models is very similar to a mddrafiproximation for factor analysis
from the perspective of learning the weights. In particuas consider a FA model with two la-
tent variables. In order to disentangle a bias in estimatiagnitude and a bias in direction, we
parameterise the weights in terms of these two quantities,

p(zx) = Norm(0,1), p(y|z, W) = Norm(wiz1 + waxs, 02), (40)
wy, = wy[cos(6y),sin(6;)]7 . (41)

We will now consider maximume-likelihood, variational mefield, and zero-temperature EM learn-
ing algorithms for the directiong{ andd,) and magnitudes«; andw,). The likelihood is Gaussian
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Figure 2: Biases in the Free-energies for a simple lineaadyoal system. True/ML parameters are
A=09,07 =1- )\ =0.19,ando; = 0.43. In each case one parameter is learned and the others

are set to their true/ML values. A. learningB. Iearningag, C. learningr2. Large panels show the

uncertainty preserving methodg ¢). Small panels show the zero-temperature EM approggh (
The bottom two panels show a zoomed in region of the top twelgan



and given by,

p(y) = Norm(0, 3y), (42)
s w} cos?(01) + w3 cos®(02) + o w? sin(6) cos(6r) + w3 sin(f2) cos(62)
Y | w?sin(fy) cos(h1) + w3 sin(fy) cos(6s) wisin®(01) + w3 sin®(6;) + o2
(43)

The posterior is also Gaussian,

p($|y) = Norm(ﬂw\yv Zw\y)a (44)
_ 1 y1wy cos(01) + yaw sin(61)
M|y = G_gzm\y [ yrwe cos(b2) + yows sin(fs) |’ (45)
_ 1 w} + o2 wywa cos(f; — 63)
1 _ - 1 y 1W2 1 2
Zm\y - 05 [ wyrws cos(f; — 62) w3 + 05 ) (46)

As expected the covariance of the posterior is only affebtechanging the relative angbetween
the two weights, and not on the absolute angle. This is becaxjglaining away gets larger when
the weights point in the same direction.

The chain-factored variational approximationgiee) = ¢(z1)g(x2) and we have seen that the
optimal updates for the factors are Gaussians which mag&im#ans and precisions of the posterior.
That is,

2

2
g, G’U

) , q(z1) = Norm (um|y(2), m) ) (47)
Yy 2

Using the results from the previous section the KL divergdmetween the posterior and this distri-
bution is the log ratio of the determinant of the posteriath® determinant of the approximation,

=N 1), L
q(x1) orm (Mmy( )s T+

(o +wi)(oy + wd)
(05 + w%)(aﬁ +w3) — wiw3 cos?(6; — b3)

KL(¢(2)|[p(z|y)) = log < (48)

Dependence on the directions

Imagine for a moment that that we know the magnitude of thgtsiis unity {v; = wo = 1) and
that the observation noise is very smaff, — 0. The posterior is highly correlated in this case and
the variational approximation will be at its poorest. Howg\the compactness property means it be-
comes ulta-confident and the variance of the variationai@@mation becomes tiny (the uncertainty

in z is o /wy). More interestingly, the KL-divergence beconi€s — log (m) This

is zero when the difference in angle between the weightg2sdegrees. This makes sense as there
is no explaining away in this case and so the mean-field ajipedion is exact. However, if the
weights point in the same direction (and the difference gieais zero) the KL is infinite. Again this
makes sense as explaining away is greatest here and thefiglgaapproximation tends to a delta
function. The conclusion is thahe weights derived from variational learning will tend to be
mor e orthogonal than the true weights. Furthermore, although the KL increases with decreasing
observation noise;(i), the bias turns out to be independentafand this because the likelihood
becomes more peaked as the observation noise decreasety eaacelling the KL contribution

(" I haven't proved this, but it is empirically true over &gry wide range of values !!!).

Dependence on the directions

Imagine now we know that we know, = 1, and the goal is to infer,. Moreover, let the directions
of the weights also be known and the difference in angl® is- o = 7/4. The KL-divergence

2 2 2
becomeKL — log ((U2f1y):ro_l2)ifi;zfiz/2). This is zero when the magnitude of the second weight
Y Y 2 2
2
is zero (w2 = 0), and tends tdog% as the magnitude increases to infinity — oco. This
Y

results in a small bias in inferring the magnitude of the Wagig
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Figure 3: Top: Likelihood (black line) and Free-energy (lied) as a function ofl; whend; is set

to the true/ML value of; = 0. The Free-energy peaks at a value closer t2 than the true peak
in the likelihood (which is ab = 7/8 = 22.5 degrees). Bottom: the log-joint or Zero-temperature
EM objective function is significantly biased, though lesgtgan the variational method.

We also consider the zero-temperature EM objective funatibich is the average log-joint evalu-
ated at the MAP setting of the latents.

1
logp(x,y) = — log(27) — 10g(27m§) ~3 (ZC% + 23+

Y1 — Wi cos(@l)zl — W2 COS(92)$2)2 + (yQ — W1 Sin(91)$1 — W2 sin(92)x2)2

(49)

The MAP and the mean are the same for a Gaussian and so the M#®R) der the latents is
identical to the posterior mean.

Results: Learning thedirections
We consider learning,. For conveniencé; remains fixed at its true/ML value ®f The results
show,

1. The variational method returns an estimaté@-ofvhich is biased toward the direction or-
thogonal tod, (%w) (see Fig. 3 and Fig. 4). This bias is greatest when the triuesaf the

angles are close togeth®ar = 0, and smallest when they are orthogofial- 6, = %w.

2. The bias in the variational method is not affected by theeolation noise. This is because
the sharpening of the likelihood which occurs as the obs$ervanoise decreases cancels
the increase in the KL term.

3. The zero-temperature EM method also returns an estinfidke aveights which is often
significantly biased toward the orthogonal direction (sé&g B). However, this bias is
smaller than that for the variational approach. Moreovee, bias has a different trend
being smallest when the weights are orthogamathen they are very similar and greatest
at intermediate regions.

4. The bias in the variational method is affected by the olzg&m noise (see Fig. 5)

Results: Learning the magnitudes
We consider learning,. For convenience; remains fixed at its ML/true value of 1.

1. The variational method returns an under-estimate-08és it is always biased toward the
zero (e.g. Fig. 6.
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Figure 4: Bias in inferring, as a function of the true/ML value wheéh = 0. Red line: The mean-
field bias is smallest when the weights are orthogodA# & 0) and greatest when they are (anti-)
parallel A6 = 90). Black lines: The zero-temperature EM bias is smaller tiwath for mean-field
and is largest when the weights partially overlap. The biasvg with increasing noise level.
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Figure 5: Bias in inferring- as a function of the observation n0|5§ andd, for zero-temperature
EM. The bias is often very large and it depends on the obsernvabise (in a complex manner),
unlike the case with the variational method.
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Figure 6: Top: Likelihood (black line) and Free-energy (lied) as a function ofvs whenw; is set

to the true/ML value ofv; = 1, A8 = w/4 = 45 degrees). The Free-energy peaks at a value closer
to 0 than the true peak in the likelihood. Bottom: the log-jointZero-temperature EM objective
function suffers from an over-fitting problem and returnsrémite value for the weights.
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Figure 7: Top: Likelihood (black line) and Free-energy (lied) as a function ofvs whenw; is set

to the true/ML value ofv; = 1, A6 = w/4 = 45 degrees). The Free-energy peaks at a value closer
to 0 than the true peak in the likelihood. Bottom: the log-jointZero-temperature EM objective
function suffers from an over-fitting problem and returnsrémite value for the weights.

2. This bias is greatest when correlations in the postermtagest and therefore when the
observation noise is small and the angle between the wesgtafl (see Fig. 7.

3. The zero-temperature EM method returns an infinite vauthe weights (and an infinites-
imal value for the latent variables).

Conclusions

1. Chain-factored approximationsin time-series will hal®as toward finding weights which
are more orthogonal and smaller in magnitude than the trueyflights. This can cause 1.
weights repelling one another 2. pruning of weights.

2. Zero-temperature EM also results in a similar bias foeation. As this is the method of
choice for learning ICA models, this might warrant furthereéstigation. Zero-temperature

10



EM cannot recover the magnitudes correctly, and this hagtbdmdled by a hack (like
renormalising the weights).

3. Itis a general feature that the directions and magnitadiélse weights in a model will
effect the dependencies in the posterior. So, although ffiemhapproximations are not
the sort of approximation that are used to learn e.g. ICA rspdeher approaches (e.g.
that used in the following section) do impose some type ofofégation, and it is likely
that the weights will be able to arrange themselves away framML solution in order to
reduce dependencies in the posterior to some extent (ethe lexample that follows the
factorisation ends up making the binary latent variableependent in the approximate
posterior, and so if this method was extended to paramedamiteg the weights would be
biased toward becoming orthogonal).

3.3 Biasesfor Independent Component Analysis

In order to look at the success of variational approximai@hen explaining away causes the pos-
terior to be multi-modal we studied a very simple ICA modethwiwo latent variables and one
dimensional observations. The distributions over thenkat@riables are a mixture of two, zero
mean Gaussians. The mixing proportionsBf2, but the variances differ,

1
p(sk) = 57 (50)
p(zx|sk) = Norm (0, (1 — s)o? + s,(2 — 0?)) , (51)
p(ylx1, z2) = Norm(zq1 + 2, 0’;). (52)
The variance of the latent variables is fixed to be unity as,
(@) — {21)? = (@) = 3o* + 52— 0?) = 1. (53)
The kurtosis can be varied between zero<{ 1) and three4¢ = 0) as,
((@=n*) \
K@) = ————-5-3=(z") -3 (54)
({22) — (2)?)
g (c*+(2-0%)?%) —3=3(1-0) (55)

The goal is to produce a one dimensional plot of the likelthand free-energy as a function of this
kurtosis (equivalently?).

The key quantity in deriving the exact EM updates and theatianal updates (and therefore the
free-energies and likelihood) is the log-joint,

3 1 1 1
logp(x,s,y) = —log4 — §log27r — §1Og05 — —(s1 + s2)log(2 — 0?) — 5(2 — 51 — 59)log

2
1, 11 1, 11
1T 1
— 122 + %(wl + o) — ﬁgf (56)
Uy Uy Uy
wherey = % The posterior distribution is formed from renormalisitig texponential of
this quantity and that is a mixture of Gaussians,
p(x, sly) = m(s)Normg (u(s), X(s)) (57)

The covariance and mean of the mixture components are,

2517+ = + 5= =

G 7 ts = NS

S = | TR s [ o=t | 1] e
Y Y

11



The mixing proportions are a little more complicated, arelude a term which is the likelihood of
the parameters,

m(s) = L ﬁ' ! X e

7ls) = (2= 0?) FT (%) 7O (det (2)) P e (%Ms)Tz;lu(s)) (60)

1 1 .
ply) = m €xp <—2T‘592> Z 7i(s) (61)

51,52

The next task is to compute the variational updates. We uapptoach which ignores dependencies
between the binary and Gaussian latent variables, but vdsiptures dependencies between latent
variables of the same type, thatdgés, ) = ¢(s)q(x). The updates are easily computed from the
log-joint,

1

q(x) = - exp (logp(, 8, y))y(s) = Norm(ug, q) (62)

2(s1)y + % + —2 % 1

-1 _ 9y g 9y — i
Yo = 1 Wby + &+ |7 HT gz { 1 } (63)
Y
1
q(s) = 7 &P (log p(, 8, ¥)) () (64)
L 1 2

o(s1,55) = i ) o2 A 02(2—02) exp( 'Y<£C2>) (65)

; Zs | Temgom OP (=) g5z exp (—y ((z3) + (23)))

The optimal distribution oves is therefore factoredy(s) = g(s1)q(s2).

Ideally we would like to analytically find the fixed-point re@ed by iterating these two updates.
However, this seems impossible. Instead we have to satisBetves with picking a kurtosis, iter-
ating these two updates until convergence and then congptitinfree-energy. We can check the
maxima located in this way by running variational EM.

All that remains to be computed is the free energy which isatre¥age log-joint plus the entropy of
the approximating distribution,

F(q(x, s),0) = (logp(x, s,0)) + H(q(x)) + H(q(s)) (66)
The average log-joint is,

3 1 1 1
logp(zx,s,y) = —log4 — 3 log 2m — 3 1ogcr§ - §(<sl> + (s2)) log(2 — 0?) — 5(2 (s1) — (s2))log o
1 1 1 1 1 1
_ 5 <.”L'§> (2’}/81 + ; + O'_§> - 5 <£C§> (2’7<82> + — + 0_—5)
(2122) Y Loy
= + G—§(<5€1> + (22)) — @y (67)
The entropy of the Gaussian distribution oweis,
1
H(g(x)) = 3 (log det 273, + 2) (68)

The entropy of the distribution overis,
1 1
=— Z Z q(s1, s2)logq(s1, s2) (69)
81: :

If the sufficient statistics always converged on a symmswlation significant simplification could
be achieved. Unfortunately, small minority of solutiongdik this symmetry and so this is not
possible.
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Figure 8: The posterior in over-complete ICA models is carpEnd multi-modal (left). The varia-
tional posterior is simple, unimodal and compact (right).

Finally the M-Step updates are made used a gradient basidisgtton scheme (conjugate gradi-
ents) and are given by,

2d<log];(§/2, 5,T)) _ _% F((s0) + (1)) 02(22_ —
~ b (2o 5% - 2 ) - ) (2b e - %) (70)
d 1 1
dTWQ - (2 - 02)° Tt (1)
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at a sparseness of zero.

14



