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Abstract

This is the technical report for the paper “Biases in Variational Learning”. It fills
in some of the technical steps and contributes a couple of different examples. It
shouldnot be read in isolation as it does not include all of the examplesin the
paper and there is little in the way of explanation especially of the high level
points.

1 Factored Gaussian Variational Approximations

We will often find ourselves minimizing the KL between a factored Gaussian and a correlated Gaus-
sian. That is,

KL(q(x)|p(x)) = −1

2

K
∑

k=1

log σ2
k +

1

2
log detΣ−1 +

1

2
tr
(

Σ−1Σx

)

, (1)

Σx =
〈

(x − µ)(x − µ)T
〉

q(x)
. (2)

Optimising this for the meansµk and then the variancesσ2
k gives us the following optimal settings,

µk = µk, σ2
k =

1

Σ2
kk

. (3)

That is, the mean and precisions (diagonal of the inverse covariance matrix) of the approximating
distribution match the mean and precisions of the true distribution.

2 Examples of Compactness

2.1 Compactness in continuous models

As a warm-up, we consider a simple illustration of the utility of the result from the last section.
(This is a variant on Mackay, 2003 page 434). Consider a zero-mean two-dimensional Gaussian
distribution with axes oriented in the directionse1 = [1, 1] ande2 = [1,−1] with variancesσ2

1 and
σ2

2 . That is,

Σ =
1

2
σ2

1e1e
T
1 +

1

2
σ2

2 , e2e
T
1 . (4)

Inverting this matrix, the variational updates are,

q(xi) = Norm

(

0,
1

2

σ2
1σ

2
2

σ2
1 + σ2

2

)

. (5)

The approximating distribution is spherical. If the variance of the two components is very different,
sayσ2

1 >> σ2
2 then the width of the approximating distribution becomes,σ2

2 , and therefore inde-
pendent of the longer length-scale. In this sense the approximation is becoming compact, matching
the smallest length scale structure in the posterior.
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Figure 1: Temporally factored variational approximation for a linear dynamical system. As the
slowness of the distribution increases, the variational approximation narrows, but the marginal vari-
ance is fixed. Notice the variational ellipse intersects theposterior ellipse on the axes indicating the
variational distribution has the width of the conditional distribution.

One common situation where this effect is important arises when we factorise over strongly coupled
variables and this is fairly routine for linear dynamical systems. By way of example, imagine we
have the following AR(1) distribution,

p(xt|xt−1) = Norm(λxt−1, σ
2). (6)

The marginal mean of this system is zero and the marginal variance,

σ2
∞ =

σ2

1 − λ2
. (7)

Consider then the joint distribution,
p(xt−1, xt) = p(xt|xt−1)p(xt−1), (8)

p(xt−1) = Norm(0, σ2
∞). (9)

This is a Gaussian distribution with zero mean and covariance,

Σ−1 =
1

σ2

[

1 −λ
−λ 1

]

, Σ =
σ2

1 − λ2

[

1 λ
λ 1

]

. (10)

Let’s approximate this using a factored variational approximation and use the results above to cal-
culate the variational updates. Clealy this will cause problems as the latent variables are strongly
correlated across time. In fact the example is exactly identical to the previous one, butσ2

1 = σ2

1−λ

andσ2
2 = σ2

1+λ .

So we can use the result directly and the variational approximation is,
q(xt) = Norm(0, σ2), (11)

q(xt−1) = Norm(0, σ2). (12)
That is, the distribution overxt is exactly the same as if we hadknown the latent variable the previous
time step to be zeroxt−1 = 0. None of the uncertainty in the value of the previous latent has been
folded in.

In fact the ratio of the variance of the variational approximation to the true variance isσ
2

var
σ2

true
= 1−λ2.

Typically for LDS where the dynamics are slow, i.e.λ = 1−∆ and∆ is a small quantity (e.g10−1-
10−3). The ratio of the variance of the approximating distribution to the truth is≈ 2∆ (meaning
that the approximation is for example,20% to0.2% of the true variance).

2.2 Compactness in Discrete Models

Imagine a binary Markov Model which is symmetric, with slow dynamics,

p(x1) =
1

2

[

1
1

]

, (13)

p(x2|x1) =

[

1 − ∆ ∆
∆ 1 − ∆

]

. (14)
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So the system tends to stay in the same state (probability1 − ∆) rather than switching (probability
∆). The joint is simply,

p(x1, x2) =
1

2

[

1 − ∆ ∆
∆ 1 − ∆

]

. (15)

We make a fully factored approximation to this distribution, p(x1, x2) = q(x1)q(x2). This approx-
imation is bound to fail catastrophically as we are approximating an asymmetric distribution with a
symmetric one. As we shall see, the resulting distribution is compact. Definingq(xi = 1) = ρi, the
KL is,
KL(q(x1, x2)||p(x1, x2)) =

− ρ1ρ2 log
1

2
(1 − ∆) − (1 − ρ1)ρ2 log

1

2
∆ − ρ1(1 − ρ2) log

1

2
∆ − (1 − ρ1)(1 − ρ2) log

1

2
(1 − ∆)

+ ρ1 log ρ1 + (1 − ρ1) log(1 − ρ1) + ρ2 log ρ2 + (1 − ρ2) log(1 − ρ2). (16)
The variational distribution is,

ρ1 =
1

1 +
(

∆
1−∆

)2ρ1−1 , ρ1 = ρ2. (17)

So if there are strong temporal correlations so that∆ → 0 then there is symmetry breaking and
ρ1 → 1 or ρ1 → 0 so the approximate joint is either

q(x1, x2) →
[

0 0
0 1

]

, or q(x1, x2) →
[

1 0
0 0

]

. (18)

Both of which are compact versions of the posterior, and do not fold in the uncertainty inx1: just as
was the case for the previous example with a linear dynamicalsystem.

3 Biases in Variational Parameter Learning

3.1 Biases for Gaussian Linear Dynamical Systems

Here we provide some more details on the derivation of the bias results for the LDS. The LDS under
consideration is,

p(xk,1) = Norm

(

0,
σ2

x

1 − λ2

)

, (19)

p(xk,2) = Norm
(

λxk,1, σ
2
x

)

, (20)

p(yt|x1,t, x2,t) = Norm(x1t + x2t, σ
2
y). (21)

The joint Gaussian over the observations and latent variables is therefore Gaussian. The likelihood

of the parameters is formed by marginalising, usingyt = x1t + x2t + σyǫt, 〈x2
kt〉 =

σ2

x

1−λ2 and

〈xk1xk2〉 =
λσ2

x

1−λ2 ,

p(y1, y2|θ) = Norm(0, ΣY ), (22)

ΣY = Iσ2
y + 2

σ2
x

1 − λ2

[

1 λ
λ 1

]

. (23)

This means the likelihood ofN observations of the time series is,

log p(Y |θ) = −N

2

(

log det 2πΣy + tr

(

Σ−1
y

1

N

N
∑

n=1

yny
T
n

))

(24)

Next we form the posterior distribution over the latent variables is also Gaussian. It can be derived
by first finding the joint,

p(Y, X |θ) =
1

Z
exp

(

− 1

2

(

1

σ2
y

+
1

σ2
x

)

(

x2
11 + x2

21 + x2
12 + x2

22

)

− 1

2σ2
y

(y2
1 + y2

2)

+
λ

σ2
x

(x11x12 + x21x22) +
1

σ2
y

(y1 (x11 + x21) + y2 (x12 + x22) − x11x21 − x12x22)

)

(25)
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The posterior is simply derived from the joint by picking offthe functional dependence on theX ,
which is Gaussian. A symbolic package can be used to invert the corresponding inverse-covariance
matrix and find the mean. Definingx = [x11, x21, x12, x22]

T , it is given by,

p(x|y) = Norm(µx|y, Σx|y). (26)

Where the inverse-covariance and mean are given by,

Σ−1
x|y =













1
σ2

y

+ 1
σ2

x

1
σ2

y

− λ
σ2

x

0
1

σ2
y

1
σ2

y

+ 1
σ2

x

0 − λ
σ2

x

− λ
σ2

x

0 1
σ2

y

+ 1
σ2

x

1
σ2

y

0 − λ
σ2

x

1
σ2

y

1
σ2

y

+ 1
σ2

x













, µx|y =
1

σ2
y

Σx|y







y1

y1

y2

y2






. (27)

(28)

We now consider three different variational approximations. The fully factored mean-field approxi-
mation, fatorisation over time, and factorisation over chains.

unfactored over chains factored over chains
unfactored over time p(x|y) = q(x11, x12, x21, x22) q2(x) = q21(x11, x12)q22(x21, x22)
factored over time q3(x) = q31(x11, x21)q32(x12, x22) q1(x) = q11(x1)q12(x2)q13(x3)q14(x4)

The optimal updates for these distributions can be found by minimising the variational KL (Eq.??).
The solution is that each factor is Gaussians with a mean and precision that matches the correspond-
ing elements inµx|y andΣ−1

x|y (see section 1). Furthermore, as the approximations and posterior
distributions are all Gaussians, it is possible to compute the KL divergences between them using the
relationship in Eq. 2. As the approximating distributions have been found by minimizing the KL,
things simplify to leave,

KLi

(

A
∏

a=1

qia(xa)||p(x|y)

)

=
1

2
log detΣx|y − 1

2

∑

a

log det Σia. (29)

Which is the log of the ratio between the volume of the true posterior and the volume of the ap-
proximation. As the KL-divergence is positive, the volume of the approximation is always smaller
than the volume of the true posterior, which is our friend, the compactness property. Using this
expression we find,

KL1 =
1

2
log

(

σ2
y + σ2

x

)4

σ4
yγ

(30)

KL2 =
1

2
log

(

(

σ2
y + σ2

x

)2 − λ2σ4
y

)2

σ4
yγ

(31)

KL3 =
1

2
log

(

σ2
y + 2σ2

x

)2

γ
(32)

where
γ = (1 − λ2)

(

(2σ2
x + σ2

y)2 − λσ4
y

)

(33)
These results are easily checked using a symbolic maths package.

For completeness we check everything using EM and the E-Stepupdates have essentially been given
(matching means and correponding precisions). The M-Step updates are,

λ = −1

a
+ sign(a)

√

1 +
1

a2
, a =

1

Nσ2
x

N
∑

n=1

(

〈x(n)
11 x

(n)
12 〉 + 〈x(n)

21 x
(n)
22 〉
)

(34)

σ2
x =

1

4N

N
∑

n=1

(

〈
(

x
(n)
11

)2

〉 + 〈
(

x
(n)
21

)2

〉 + 〈
(

x
(n)
12

)2

〉 + 〈
(

x
(n)
22

)2

〉

− 2λ
(

〈x(n)
11 x

(n)
12 〉 + 〈x(n)

21 x
(n)
22 〉
)

)

(35)
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σ2
y =

1

2N

N
∑

n=1

(

〈
(

x
(n)
11

)2

〉 + 〈
(

x
(n)
21

)2

〉 + 〈
(

x
(n)
12

)2

〉 + 〈
(

x
(n)
22

)2

〉 +
(

y
(n)
1

)2

+
(

y
(n)
2

)2

− 2
(

y1

(

〈x(n)
11 〉 + 〈x(n)

21 〉
)

+ y2

(

〈x(n)
12 〉 + 〈x(n)

22 〉
)

+ 〈x11x21〉 + 〈x12x22〉
)

)

(36)

Finally we derive the MAP estimate of the latent variables. As the log-joint (Eq. 25) is quadratic
in the latent variables, the derivatives with respect to thelatent variables yield the following linear
updates,










x
(i+1)
11

x
(i+1)
21

x
(i+1)
12

x
(i+1)
22











=
1

σ2
x + σ2

y









0 −σ2
x λσ2

y 0
−σ2

x 0 0 λσ2
y

λσ2
y 0 0 −σ2

x

0 λσ2
y −σ2

x 0



















x
(i)
11

x
(i)
21

x
(i)
12

x
(i)
22











+
σ2

x

σ2
x + σ2

y







y1

y1

y2

y2






(37)

Defining xi+1 = Wxi + γ, the optimal value for the latents is given by the eigenvector, with
eigenvalue one, of the matrix,

M =

[

W γ
0T 1

]

(38)

This can be computed using a sybolic maths package, and the solution is,

eλ=1 =
σ2

x

Z









(2σ2
x + σ2

y)y1 + λσ2
yy2

(2σ2
x + σ2

y)y1 + λσ2
yy2

(2σ2
x + σ2

y)y2 + λσ2
yy1

(2σ2
x + σ2

y)y2 + λσ2
yy1









(39)

WhereZ = 4σ4
x − λ2σ4

y + 4σ2
xσ2

y + σ4
y. Notice this has the symmetry properties we would expect:

x11 = x21 andxk1(y1, y2) = xk2(y2, y1). Unsurprisingly this is identical to the variational updates
for the means as the posterior is Gaussian and, as such, the mode and the mean are in the same place.
These results can be substituted into the log-joint enabling us to evaluate the MAP-objective purely
as a function of the parameters.

3.2 Biases for learning weights in factor analysis (or factorising over time in LDSSMs)

The results from the previous section seem to indicate that factorising over chains is a better approach
than factorising over time in LDSSMs. This is because the usual regime in which to use time-series
models is where the observation noise (σ2

y) is large and the dynamics are strong (σ2
x ≈ 0 and

|λ| ≈ 1). In this regimeq2 did rather better thanq3 as the dynamical information is critical.

However, the above example had fixed generative weights and one-dimensional observations (yt =
x1t + x2t). We now consider what happens when you factorise over chains in the case where you
are learning the weights. As explaining away is neglected when using an approximation which is
factored across chains, and as a proper treatment of explaining away is required to estimate the
weights correctly, we might expect to see a severe bias.

Although we could consider a time-series model, it is simpler to consider a factor analysis (FA)
model. The results will clearly generalise to time-series:The chain-factored approximation for lin-
ear Gaussian state-space models is very similar to a mean-field approximation for factor analysis
from the perspective of learning the weights. In particular, we consider a FA model with two la-
tent variables. In order to disentangle a bias in estimatingmagnitude and a bias in direction, we
parameterise the weights in terms of these two quantities,

p(xk) = Norm(0, 1), p(y|x, W ) = Norm(w1x1 + w2x2, σ
2
y), (40)

wk = wk[cos(θk), sin(θk)]T . (41)

We will now consider maximum-likelihood, variational mean-field, and zero-temperature EM learn-
ing algorithms for the directions (θ1 andθ2) and magnitudes (w1 andw2). The likelihood is Gaussian
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Figure 2: Biases in the Free-energies for a simple linear dynamical system. True/ML parameters are
λ = 0.9, σ2

x = 1 − λ2 = 0.19, andσ2
y = 0.43. In each case one parameter is learned and the others

are set to their true/ML values. A. learningλ, B. learningσ2
y, C. learningσ2

x. Large panels show the
uncertainty preserving methods (q1:3). Small panels show the zero-temperature EM approach (q4).
The bottom two panels show a zoomed in region of the top two panels.
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and given by,

p(y) = Norm(0, Σy), (42)

Σy =

[

w2
1 cos2(θ1) + w2

2 cos2(θ2) + σ2
y w2

1 sin(θ1) cos(θ1) + w2
2 sin(θ2) cos(θ2)

w2
1 sin(θ1) cos(θ1) + w2

2 sin(θ2) cos(θ2) w2
1 sin2(θ1) + w2

2 sin2(θ2) + σ2
y

]

.

(43)

The posterior is also Gaussian,

p(x|y) = Norm(µx|y, Σx|y), (44)

µx|y =
1

σ2
y

Σx|y

[

y1w1 cos(θ1) + y2w1 sin(θ1)
y1w2 cos(θ2) + y2w2 sin(θ2)

]

, (45)

Σ−1
x|y =

1

σ2
y

[

w2
1 + σ2

y w1w2 cos(θ1 − θ2)
w1w2 cos(θ1 − θ2) w2

2 + σ2
y

]

. (46)

As expected the covariance of the posterior is only affectedby changing the relative anglebetween
the two weights, and not on the absolute angle. This is because explaining away gets larger when
the weights point in the same direction.

The chain-factored variational approximation isq(x) = q(x1)q(x2) and we have seen that the
optimal updates for the factors are Gaussians which match the means and precisions of the posterior.
That is,

q(x1) = Norm

(

µx|y(1),
σ2

y

σ2
y + w2

1

)

, q(x1) = Norm

(

µx|y(2),
σ2

y

σ2
y + w2

2

)

. (47)

Using the results from the previous section the KL divergence between the posterior and this distri-
bution is the log ratio of the determinant of the posterior tothe determinant of the approximation,

KL(q(x)||p(x|y)) = log

(

(σ2
y + w2

1)(σ
2
y + w2

2)

(σ2
y + w2

1)(σ
2
y + w2

2) − w2
1w

2
2 cos2(θ1 − θ2)

)

(48)

Dependence on the directions

Imagine for a moment that that we know the magnitude of the weights is unity (w1 = w2 = 1) and
that the observation noise is very small,σ2

y → 0. The posterior is highly correlated in this case and
the variational approximation will be at its poorest. However, the compactness property means it be-
comes ulta-confident and the variance of the variational approximation becomes tiny (the uncertainty

in xk is σ2
y/w2

k). More interestingly, the KL-divergence becomesKL → log
(

1
1−cos2(θ1−θ2)

)

. This

is zero when the difference in angle between the weights isπ/2 degrees. This makes sense as there
is no explaining away in this case and so the mean-field approximation is exact. However, if the
weights point in the same direction (and the difference in angle is zero) the KL is infinite. Again this
makes sense as explaining away is greatest here and the mean-field approximation tends to a delta
function. The conclusion is thatthe weights derived from variational learning will tend to be
more orthogonal than the true weights. Furthermore, although the KL increases with decreasing
observation noise (σ2

y), the bias turns out to be independent ofσ2
y and this because the likelihood

becomes more peaked as the observation noise decreases, exactly cancelling the KL contribution
(!!! I haven’t proved this, but it is empirically true over a very wide range of values !!!).

Dependence on the directions

Imagine now we know that we knoww1 = 1, and the goal is to inferw2. Moreover, let the directions
of the weights also be known and the difference in angle isθ1 − θ2 = π/4. The KL-divergence

becomesKL → log
(

(σ2

y
+1)(σ2

y
+w2

2
)

(σ2
y
+1)(σ2

y
+w2

2
)−w2

2
/2

)

. This is zero when the magnitude of the second weight

is zero (w2 = 0), and tends tolog
1+σ2

y

1/2+σ2
y

as the magnitude increases to infinityw2 → ∞. This

results in a small bias in inferring the magnitude of the weight.
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Figure 3: Top: Likelihood (black line) and Free-energy (redline) as a function ofθ2 whenθ1 is set
to the true/ML value ofθ1 = 0. The Free-energy peaks at a value closer toπ/2 than the true peak
in the likelihood (which is atθ = π/8 = 22.5 degrees). Bottom: the log-joint or Zero-temperature
EM objective function is significantly biased, though less so than the variational method.

We also consider the zero-temperature EM objective function which is the average log-joint evalu-
ated at the MAP setting of the latents.

log p(x, y) = − log(2π) − log(2πσ2
y) − 1

2

(

x2
1 + x2

2+

1

σ2
y

(y1 − w1 cos(θ1)x1 − w2 cos(θ2)x2)
2

+
1

σ2
y

(y2 − w1 sin(θ1)x1 − w2 sin(θ2)x2)
2

)

(49)

The MAP and the mean are the same for a Gaussian and so the MAP setting for the latents is
identical to the posterior mean.

Results: Learning the directions
We consider learningθ2. For convenienceθ1 remains fixed at its true/ML value of0. The results
show,

1. The variational method returns an estimate ofθ2 which is biased toward the direction or-
thogonal toθ1 ( 1

2π) (see Fig. 3 and Fig. 4). This bias is greatest when the true values of the
angles are close togetherθ1 = θ2 and smallest when they are orthogonalθ2 − θ1 = 1

2π.

2. The bias in the variational method is not affected by the observation noise. This is because
the sharpening of the likelihood which occurs as the observation noise decreases cancels
the increase in the KL term.

3. The zero-temperature EM method also returns an estimate of the weights which is often
significantly biased toward the orthogonal direction (see Fig. 3). However, this bias is
smaller than that for the variational approach. Moreover, the bias has a different trend
being smallest when the weights are orthogonalor when they are very similar and greatest
at intermediate regions.

4. The bias in the variational method is affected by the observation noise (see Fig. 5)

Results: Learning the magnitudes
We consider learningw2. For conveniencew1 remains fixed at its ML/true value of 1.

1. The variational method returns an under-estimate ofw2 as it is always biased toward the
zero (e.g. Fig. 6.
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2. This bias is greatest when correlations in the posterior are largest and therefore when the
observation noise is small and the angle between the weightssmall (see Fig. 7.

3. The zero-temperature EM method returns an infinite value for the weights (and an infinites-
imal value for the latent variables).

Conclusions

1. Chain-factored approximations in time-series will havea bias toward finding weights which
are more orthogonal and smaller in magnitude than the true/ML weights. This can cause 1.
weights repelling one another 2. pruning of weights.

2. Zero-temperature EM also results in a similar bias for direction. As this is the method of
choice for learning ICA models, this might warrant further investigation. Zero-temperature
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EM cannot recover the magnitudes correctly, and this has to be handled by a hack (like
renormalising the weights).

3. It is a general feature that the directions and magnitudesof the weights in a model will
effect the dependencies in the posterior. So, although mean-field approximations are not
the sort of approximation that are used to learn e.g. ICA models, other approaches (e.g.
that used in the following section) do impose some type of factorisation, and it is likely
that the weights will be able to arrange themselves away fromthe ML solution in order to
reduce dependencies in the posterior to some extent (e.g. Inthe example that follows the
factorisation ends up making the binary latent variables independent in the approximate
posterior, and so if this method was extended to parameter learning the weights would be
biased toward becoming orthogonal).

3.3 Biases for Independent Component Analysis

In order to look at the success of variational approximations when explaining away causes the pos-
terior to be multi-modal we studied a very simple ICA model with two latent variables and one
dimensional observations. The distributions over the latent variables are a mixture of two, zero
mean Gaussians. The mixing proportions are1/2, but the variances differ,

p(sk) =
1

2
, (50)

p(xk|sk) = Norm
(

0, (1 − sk)σ2 + sk(2 − σ2)
)

, (51)

p(y|x1, x2) = Norm(x1 + x2, σ
2
y). (52)

The variance of the latent variables is fixed to be unity as,

〈x2
1〉 − 〈x1〉2 = 〈x2

1〉 =
1

2
σ2 +

1

2
(2 − σ2) = 1. (53)

The kurtosis can be varied between zero (σ = 1) and three (σ = 0) as,

K(x) =

〈

(x − 〈x〉)4
〉

(〈x2〉 − 〈x〉2)2
− 3 = 〈x4〉 − 3 (54)

3

2

(

σ4 + (2 − σ2)2
)

− 3 = 3(1 − σ2)2. (55)

The goal is to produce a one dimensional plot of the likelihood and free-energy as a function of this
kurtosis (equivalentlyσ2).

The key quantity in deriving the exact EM updates and the variational updates (and therefore the
free-energies and likelihood) is the log-joint,

log p(x, s, y) = − log 4 − 3

2
log 2π − 1

2
log σ2

y − 1

2
(s1 + s2) log(2 − σ2) − 1

2
(2 − s1 − s2) log σ2

− 1

2
x2

1

(

2γs1 +
1

σ2
+

1

σ2
y

)

− 1

2
x2

2

(

2γs2 +
1

σ2
+

1

σ2
y

)

− x1x2

σ2
y

+
y

σ2
y

(x1 + x2) −
1

2σ2
y

y2 (56)

whereγ = σ2−1
σ2(2−σ2) . The posterior distribution is formed from renormalising the exponential of

this quantity and that is a mixture of Gaussians,

p(x, s|y) = π(s)Normx(µ(s), Σ(s)) (57)

The covariance and mean of the mixture components are,

Σ(s)−1 =

[

2s1γ + 1
σ2

y

+ 1
σ2

1
σ2

y

1
σ2

y

2s2γ + 1
σ2

y

+ 1
σ2

]

, µ(s) =
y

σ2
y

Σ(s)

[

1
1

]

(58)
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The mixing proportions are a little more complicated, and include a term which is the likelihood of
the parameters,

π(s) =
1

p(y)
π̃(s)

1

4
√

2πσ2
y

exp

(

− 1

2σ2
y

y2

)

(59)

π̃(s) =
(

2 − σ2
)− 1

2
(s1+s2) (

σ2
)− 1

2
(2−s1−s2)

(det (2πΣs))
1/2 exp

(

1

2
µ(s)T Σ−1

s
µ(s)

)

(60)

p(y) =
1

4
√

2πσ2
y

exp

(

− 1

2σ2
y

y2

)

∑

s1,s2

π̃(s) (61)

The next task is to compute the variational updates. We use anapproach which ignores dependencies
between the binary and Gaussian latent variables, but whichcaptures dependencies between latent
variables of the same type, that isq(s, x) = q(s)q(x). The updates are easily computed from the
log-joint,

q(x) =
1

Zx
exp 〈log p(x, s, y)〉q(s) = Norm(µq, Σq) (62)

Σ−1
q =

[

2〈s1〉γ + 1
σ2

y

+ 1
σ2

1
σ2

y

1
σ2

y

2〈s2〉γ + 1
σ2

y

+ 1
σ2

]

, µq =
y

σ2
y

Σq

[

1
1

]

(63)

q(s) =
1

ZS
exp 〈log p(x, s, y)〉q(x) (64)

q(s1, s2) =
1

ZS





1
σ2

1√
σ2(2−σ2)

exp
(

−γ〈x2
2〉
)

1√
σ2(2−σ2)

exp
(

−γ〈x2
1〉
)

1
2−σ2 exp

(

−γ
(

〈x2
1〉 + 〈x2

2〉
))



 (65)

The optimal distribution overs is therefore factored,q(s) = q(s1)q(s2).

Ideally we would like to analytically find the fixed-point reached by iterating these two updates.
However, this seems impossible. Instead we have to satisfy ourselves with picking a kurtosis, iter-
ating these two updates until convergence and then computing the free-energy. We can check the
maxima located in this way by running variational EM.

All that remains to be computed is the free energy which is theaverage log-joint plus the entropy of
the approximating distribution,

F (q(x, s), θ) = 〈log p(x, s, θ)〉 + H(q(x)) + H(q(s)) (66)

The average log-joint is,

log p(x, s, y) = − log 4 − 3

2
log 2π − 1

2
log σ2

y − 1

2
(〈s1〉 + 〈s2〉) log(2 − σ2) − 1

2
(2 − 〈s1〉 − 〈s2〉) log σ2

− 1

2

〈

x2
1

〉

(

2γs1 +
1

σ2
+

1

σ2
y

)

− 1

2

〈

x2
2

〉

(

2γ〈s2〉 +
1

σ2
+

1

σ2
y

)

− 〈x1x2〉
σ2

y

+
y

σ2
y

(〈x1〉 + 〈x2〉) −
1

2σ2
y

y2 (67)

The entropy of the Gaussian distribution overx is,

H(q(x)) =
1

2
(log det 2πΣq + 2) (68)

The entropy of the distribution overs is,

H(q(s)) = −
1
∑

s1=0

1
∑

s2=0

q(s1, s2) log q(s1, s2) (69)

If the sufficient statistics always converged on a symmetricsolution significant simplification could
be achieved. Unfortunately, small minority of solutions break this symmetry and so this is not
possible.
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Figure 8: The posterior in over-complete ICA models is complex and multi-modal (left). The varia-
tional posterior is simple, unimodal and compact (right).

Finally the M-Step updates are made used a gradient based optimisation scheme (conjugate gradi-
ents) and are given by,

2
d〈log p(y, s, x)〉

dσ2
= − 2

σ2
+ (〈s1〉 + 〈s1〉)

2

σ2(2 − σ2)

− 〈x2
1〉
(

2〈s1〉
dγ

dσ2
− 1

σ4

)

− 〈x2
2〉
(

2〈s2〉
dγ

dσ2
− 1

σ4

)

(70)

dγ

dσ2
=

1

(2 − σ2)
2 +

1

σ4
(71)
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