Test suites In scientific research

Pietro Berkes




Motivation

* Every scientific result (especially 1if important)
should be independently reproduced at least
internally before publication (DFG, 1999)

* Not very realistic 1in our context, but the problem
does exist as simulation results are very sensitive

to bugs

* Errors in source code can be largely avoided with
appropriate programming practices



Unit testing

* One of the 12 XP practices (Kent Beck, 1999)

* Tests become part of programming cycle and are
automated

* Write testing suite (collection of testing
functions) in parallel with your code; external
software runs the tests and provides reports

* Currently, software libraries for automating
testing exist for almost every programming
language



Benefits

* Encourages better code and optimization (code
can change and consistency 1s assured by tests)

* Faster development; sounds like a paradox, but
consider:

— bugs are always pinpointed
— tests are simple and don't need to look nice

— avoids starting all over again with debugging when
you modify code

* Installation check for users if you plan to
distribute the code



S min. guide to unit testing
1.Write code 1n small, testable units; write the code
in the most straightforward way

2. Write simple tests to check your code (see next
slides)

3.Run tests and debug until all tests pass
4.0Optimize only at this point!

5.Go back to 3 until necessary



What to test, how to test 1t

e Test with simple (but general) cases using hard
coded solutions

e Test special or boundary cases

* Test general routines with specific ones



Reacting to new bugs

1.Isolate the bug using previous tests

2. Write the simplest possible test that reproduces
the bug

3.Solve the bug



Additional resources

e List of unit testing frameworks on wikipedia:
http://en.w ki pedia.org/w ki/List _of unit_testing franeworks

e Other “programming for science” resources:
http://ww. gat sby. ucl . ac. uk/ ~ber kes/ oss/ resources. ht ni



